Water Electrolysis

Information

Water electrolysis is one of the key processes for the reliable and efficient production of hydrogen from liquid water. We study the transport processes in the anodic porous transport layer (PTL) with pore network models for the first time. For this, we use the information about the real structure of the PTL from micro X-ray tomography measurements. We simulate 3D quasi-static invasion of oxygen (drainage) and water (imbibition) on the pore scale and estimate the effective transport parameters for macroscopic modeling. We plan to illustrate the dependence of the gas-liquid distribution on the structure, wettability and temperature variation. We also aim at the development of a dynamic pore scale model of heat and mass transfer.

Partners

  • Dr.-Ing. Tanja Vidakovic-Koch
    Max Planck Institute for Dynamics of Complex Technical Systems
    Electrochemical Energy Conversion
    Sandtorstrasse 1
    39106 Magdeburg
    Germany
    Homepage

Publications

  • Sourya, D. P., Gurugubelli, P. S., Bhaskaran, S., Vorhauer-Huget, N., Tsotsas, E., & Surasani, V. K. (2024). A comparative study on the Lattice Boltzmann Method and the VoF-Continuum method for oxygen transport in the anodic porous transport layer of an electrolyzer. International Journal of Hydrogen Energy, 92, 1091–1098. https://doi.org/10.1016/j.ijhydene.2024.10.340

  • Bhaskaran, S., Miličić, T., Vidaković-Koch, T., Kumar Surasani, V., Tsotsas, E., & Vorhauer-Huget, N. (2024). Model PEM water electrolyzer cell for studies of periodically alternating drainage/imbibition cycles. International Journal of Hydrogen Energy, 77, 1432–1442. https://doi.org/10.1016/j.ijhydene.2024.06.268

  • Altaf, H., Milicic, T., Vidakovic-Koch, T., Tsotsas, E., Tengattini, A., Kardjilov, N., Arlt, T., Manke, I., & Vorhauer-Huget, N. (2023). Neutron Imaging Experiments to Study Mass Transport in Commercial Titanium Felt Porous Transport Layers. Journal of The Electrochemical Society, 170(6), 064507. https://doi.org/10.1149/1945-7111/acd7a8

  • Miličić, T., Altaf, H., Vorhauer-Huget, N., Živković, L. A., Tsotsas, E., & Vidaković-Koch, T. (2022). Modeling and Analysis of Mass Transport Losses of Proton Exchange Membrane Water Electrolyzer. Processes, 10(11), Article 11. https://doi.org/10.3390/pr10112417

  • Bhaskaran, S., Pandey, D., Surasani, V. K., Tsotsas, E., Vidakovic-Koch, T., & Vorhauer-Huget, N. (2022). LBM studies at pore scale for graded anodic porous transport layer (PTL) of PEM water electrolyzer. International Journal of Hydrogen Energy, 47(74), 31551–31565. https://doi.org/10.1016/j.ijhydene.2022.07.079

  • Paliwal, S., Panda, D., Bhaskaran, S., Vorhauer-Huget, N., Tsotsas, E., & Surasani, V. K. (2021). Lattice Boltzmann method to study the water-oxygen distributions in porous transport layer (PTL) of polymer electrolyte membrane (PEM) electrolyser. International Journal of Hydrogen Energy, 46(44), 22747–22762. https://doi.org/10.1016/j.ijhydene.2021.04.112

  • Vorhauer-Huget, N., Altaf, H., Dürr, R., Tsotsas, E., & Vidaković-Koch, T. (2020). Computational Optimization of Porous Structures for Electrochemical Processes. Processes, 8(10), Article 10. https://doi.org/10.3390/pr8101205

  • Altaf, H., Vorhauer, N., Tsotsas, E., & Vidaković-Koch, T. (2020). Steady-State Water Drainage by Oxygen in Anodic Porous Transport Layer of Electrolyzers: A 2D Pore Network Study. Processes, 8(3), Article 3. https://doi.org/10.3390/pr8030362

  • Vorhauer, N., Altaf, H., Tsotsas, E., & Vidakovic-Koch, T. (2019). Pore Network Simulation of Gas-Liquid Distribution in Porous Transport Layers. Processes, 7(9), Article 9. https://doi.org/10.3390/pr7090558

Letzte Änderung: 18.11.2024 - Ansprechpartner: Webmaster