Journal Articles

2025

  • Faber, F., Vorhauer-Huget, N., Thomik, M., Gruber, S., Först, P., & Tsotsas, E. (2025). Pore-scale study of coupled heat and mass transfer during primary freeze-drying using an irregular pore network model. Drying Technology. https://doi.org/10.1080/07373937.2024.2407062

2024

  • Sourya, D. P., Gurugubelli, P. S., Bhaskaran, S., Vorhauer-Huget, N., Tsotsas, E., & Surasani, V. K. (2024). A comparative study on the Lattice Boltzmann Method and the VoF-Continuum method for oxygen transport in the anodic porous transport layer of an electrolyzer. International Journal of Hydrogen Energy, 92, 1091–1098. https://doi.org/10.1016/j.ijhydene.2024.10.340

  • Bhaskaran, S., Miličić, T., Vidaković-Koch, T., Kumar Surasani, V., Tsotsas, E., & Vorhauer-Huget, N. (2024). Model PEM water electrolyzer cell for studies of periodically alternating drainage/imbibition cycles. International Journal of Hydrogen Energy, 77, 1432–1442. https://doi.org/10.1016/j.ijhydene.2024.06.268

  • Gruber, S., Greiner, J., Eppink, A., Thomik, M., Coppens, F., Vorhauer-Huget, N., Tsotsas, E., & Foerst, P. (2024). Pore shape matters – In-situ investigation of freeze-drying kinetics by 4D XCT methods. Food Research International, 193, 114837. https://doi.org/10.1016/j.foodres.2024.114837

  • Xuan, G., Ebert, M., Rodrigues, S. J., Vorhauer-Huget, N., Lessig, C., & Fond, B. (2024). Multi-point temperature measurements in packed beds using phosphor thermometry and ray tracing simulations. Particuology, 85, 77–88. https://doi.org/10.1016/j.partic.2023.03.015

  • Vorhauer-Huget, N., Seidenbecher, J., Bhaskaran, S., Schenkel, F., Briest, L., Gopalkrishna, S., Barowski, J., Dernbecher, A., Hilfert, L., Rolfes, I., & Dieguez-Alonso, A. (2024). Dielectric and physico-chemical behavior of single thermally thick wood blocks under microwave assisted pyrolysis. Particuology, 86, 291–303. https://doi.org/10.1016/j.partic.2023.07.004

2023

  • Rodrigues, S. J., Vorhauer-Huget, N., & Tsotsas, E. (2023). Prediction of effective thermal conductivity of packed beds of polyhedral particles. Powder Technology, 430, 118997. https://doi.org/10.1016/j.powtec.2023.118997

  • Thomik, M., Faber, F., Gruber, S., Foerst, P., Tsotsas, E., & Vorhauer-Huget, N. (2023). A Non-Isothermal Pore Network Model of Primary Freeze Drying. Pharmaceutics, 15(8), 2131. https://doi.org/10.3390/pharmaceutics15082131

  • Altaf, H., Milicic, T., Vidakovic-Koch, T., Tsotsas, E., Tengattini, A., Kardjilov, N., Arlt, T., Manke, I., & Vorhauer-Huget, N. (2023). Neutron Imaging Experiments to Study Mass Transport in Commercial Titanium Felt Porous Transport Layers. Journal of The Electrochemical Society, 170(6), 064507. https://doi.org/10.1149/1945-7111/acd7a8

  • Rodrigues, S. J., Vorhauer-Huget, N., Richter, T., & Tsotsas, E. (2023). Influence of Particle Shape on Tortuosity of Non-Spherical Particle Packed Beds. Processes, 11(1), Article 1. https://doi.org/10.3390/pr11010003

2022

  • Miličić, T., Altaf, H., Vorhauer-Huget, N., Živković, L. A., Tsotsas, E., & Vidaković-Koch, T. (2022). Modeling and Analysis of Mass Transport Losses of Proton Exchange Membrane Water Electrolyzer. Processes, 10(11), Article 11. https://doi.org/10.3390/pr10112417

  • Gruber, S., Thomik, M., Vorhauer-Huget, N., Hans, L., Tsotsas, E., & Foerst, P. (2022). The Influence of Local Microstructure Inhomogeneities on Local Drying Kinetics during Freeze-Drying. Pharmaceutics, 14(10), 2132. https://doi.org/10.3390/pharmaceutics14102132

  • Bhaskaran, S., Pandey, D., Surasani, V. K., Tsotsas, E., Vidakovic-Koch, T., & Vorhauer-Huget, N. (2022). LBM studies at pore scale for graded anodic porous transport layer (PTL) of PEM water electrolyzer. International Journal of Hydrogen Energy, 47(74), 31551–31565. https://doi.org/10.1016/j.ijhydene.2022.07.079

  • Thomik, M., Gruber, S., Kaestner, A., Foerst, P., Tsotsas, E., & Vorhauer-Huget, N. (2022). Experimental Study of the Impact of Pore Structure on Drying Kinetics and Sublimation Front Patterns. Pharmaceutics, 14(8), 1538. https://doi.org/10.3390/pharmaceutics14081538

  • Rodrigues, S. J., Vorhauer-Huget, N., & Tsotsas, E. (2022). Effective thermal conductivity of packed beds made of cubical particles. International Journal of Heat and Mass Transfer, 194, 122994. https://doi.org/10.1016/j.ijheatmasstransfer.2022.122994

  • Vorhauer-Huget, N., & Shokri, N. (2022). 30 Years of pore network modeling in drying. Drying Technology, 40(4), 689–690. https://doi.org/10.1080/07373937.2022.2033422

  • Thomik, M., Gruber, S., Foerst, P., Tsotsas, E., & Vorhauer-Huget, N. (2022). Determination of 3D pore network structure of freeze-dried maltodextrin. Drying Technology, 40(4), 748–766. https://doi.org/10.1080/07373937.2021.1966030

  • Bhaskaran, S., Pandey, D., Panda, D., Paliwal, S., Vorhauer, N., Tsotsas, E., & Surasani, V. K. (2022). Study on film effects during isothermal drying of square capillary tube using Lattice Boltzmann method. Drying Technology, 40(4), 735–747. https://doi.org/10.1080/07373937.2021.1898417

  • Briest, L., Wagner, R., Tretau, A., Tsotsas, E., & Vorhauer-Huget, N. (2022). Microwave-assisted drying of clay roof tiles. Drying Technology, 40(9), 1804–1818. https://doi.org/10.1080/07373937.2021.1878369

2021

  • Gruber, S., Vorhauer-Huget, N., & Foerst, P. (2021). In situ micro-computed tomography to study microstructure and sublimation front during freeze-drying. Food Structure, 29, 100213. https://doi.org/10.1016/j.foostr.2021.100213

  • Canedo, M. S., Figueiredo, M. F. S., Thomik, M., Vorhauer-Huget, N., Tsotsas, E., & Thoméo, J. C. (2021). Porosity and pore size distribution of beds composed by sugarcane bagasse and wheat bran for solid-state cultivation. Powder Technology, 386, 166–175. https://doi.org/10.1016/j.powtec.2021.03.039

  • Paliwal, S., Panda, D., Bhaskaran, S., Vorhauer-Huget, N., Tsotsas, E., & Surasani, V. K. (2021). Lattice Boltzmann method to study the water-oxygen distributions in porous transport layer (PTL) of polymer electrolyte membrane (PEM) electrolyser. International Journal of Hydrogen Energy, 46(44), 22747–22762. https://doi.org/10.1016/j.ijhydene.2021.04.112

2020

  • Vorhauer-Huget, N., Altaf, H., Dürr, R., Tsotsas, E., & Vidaković-Koch, T. (2020). Computational Optimization of Porous Structures for Electrochemical Processes. Processes, 8(10), Article 10. https://doi.org/10.3390/pr8101205

  • Briest, L., Wagner, R., Tretau, A., Tsotsas, E., & Vorhauer-Huget, N. (2022). Microwave-assisted drying of clay roof tiles. Drying Technology, 40(9), 1804–1818. https://doi.org/10.1080/07373937.2021.1878369

  • Vorhauer-Huget, N., Mannes, D., Hilmer, M., Gruber, S., Strobl, M., Tsotsas, E., & Först, P. (2020). Freeze-Drying with Structured Sublimation Fronts—Visualization with Neutron Imaging. Processes, 8(9), Article 9. https://doi.org/10.3390/pr8091091

  • Altaf, H., Vorhauer, N., Tsotsas, E., & Vidaković-Koch, T. (2020). Steady-State Water Drainage by Oxygen in Anodic Porous Transport Layer of Electrolyzers: A 2D Pore Network Study. Processes, 8(3), Article 3. https://doi.org/10.3390/pr8030362

  • Först, P., Gruber, S., Schulz, M., Vorhauer, N., & Tsotsas, E. (2020). Characterization of Lyophilization of Frozen Bulky Solids. Chemical Engineering & Technology, 43(5), 789–796. https://doi.org/10.1002/ceat.201900500

  • Hilmer, M., Peters, J., Schulz, M., Gruber, S., Vorhauer, N., Tsotsas, E., & Foerst, P. (2020). Development of an experimental setup for in situ visualization of lyophilization using neutron radiography and computed tomography. Review of Scientific Instruments, 91(1), 014102. https://doi.org/10.1063/1.5126927

  • Gruber, S., Vorhauer, N., Schulz, M., Hilmer, M., Peters, J., Tsotsas, E., & Foerst, P. (2020). Estimation of the local sublimation front velocities from neutron radiography and tomography of particulate matter. Chemical Engineering Science, 211, 115268. https://doi.org/10.1016/j.ces.2019.115268

2019

  • Vorhauer, N., Altaf, H., Tsotsas, E., & Vidakovic-Koch, T. (2019). Pore Network Simulation of Gas-Liquid Distribution in Porous Transport Layers. Processes, 7(9), Article 9. https://doi.org/10.3390/pr7090558

  • Geistlinger, H., Ding, Y., Apelt, B., Schlüter, S., Küchler, M., Reuter, D., Vorhauer, N., & Vogel, H.-J. (2019). Evaporation Study Based on Micromodel Experiments: Comparison of Theory and Experiment. Water Resources Research, 55(8), 6653–6672. https://doi.org/10.1029/2018WR024647

  • Vorhauer, N., Tretau, A., Bück, A., & Prat, M. (2019). Microwave drying of wet clay with intermittent heating. Drying Technology, 37(5), 664–678. https://doi.org/10.1080/07373937.2018.1547740

2018

2015

  • Vorhauer, N., Wang, Y. J., Kharaghani, A., Tsotsas, E., & Prat, M. (2015). Drying with Formation of Capillary Rings in a Model Porous Medium. Transport in Porous Media, 110(2), 197–223. https://doi.org/10.1007/s11242-015-0538-1

2013

  • Vorhauer, N., Tran, Q. T., Metzger, T., Tsotsas, E., & Prat, M. (2013). Experimental Investigation of Drying in a Model Porous Medium: Influence of Thermal Gradients. Drying Technology, 31(8), 920–929. https://doi.org/10.1080/07373937.2012.724750

2012

  • Prat, M., Veran-Tissoires, S., Vorhauer, N., Metzger, T., & Tsotsas, E. (2012). Fractal Phase Distribution and Drying: Impact on Two-Phase Zone Scaling and Drying Time Scale Dependence. Drying Technology, 30(11–12), 1129–1135. https://doi.org/10.1080/07373937.2012.682124

2010

  • Vorhauer, N., Metzger, T., & Tsotsas, E. (2010). Empirical Macroscopic Model for Drying of Porous Media Based on Pore Networks and Scaling Theory. Drying Technology, 28(8), 991–1000. https://doi.org/10.1080/07373937.2010.497088

Letzte Änderung: 11.01.2025 - Ansprechpartner: Webmaster