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In a pseudo-2D fluidized bed, a new color particle tracking velocimetry (PTV) method, integrating the
Voronoi tracking algorithm and the relaxation probability tracking algorithm, is proposed to measure
velocities of individual particles with different sizes marked by distinguishable colors. Thorough verifica-
tion of the color-PTV methodology is conducted based on synthetic images generated from CFD-DEM
simulation data, in terms of segmentation bias, segmentation ratio, recovery ratio and error ratio. The
novel color-PTV methodology shows very good performance in simultaneously tracking a large number
of different individual particles in poly-disperse systems. Experimental results are used to compare with
CFD-DEM simulations using different drag models. Simulations with correction for the effect of particle
size dispersity in the drag model show significantly better agreement with respect to the mixing index,
time-averaged volumetric particle flux, distributions of individual particle velocity as well as distribu-
tions of particle granular temperature.

� 2018 Elsevier Ltd. All rights reserved.
1. Introduction

Fluidized bed spray granulation, coating and agglomeration are
widely used in chemical and pharmaceutical industries to produce
food, pharmaceuticals, fertilizers, powder catalysts and cosmetics,
as a result of excellent heat and mass transfer between solid
particles and fluid phase (Mörl et al., 2007; Tsotsas and
Mujumdar, 2011). Since the wet granulation process is highly com-
plex, it is often operated inefficiently in industrial applications. The
enhanced understanding of underlying multi-scale particle
dynamics is required to improve the efficiency of processes and
to achieve high product quality (Tsotsas, 2012, 2015).
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Nomenclature

c volume fraction of the smallest particles in each sample
[–]

dp particle diameter [mm]
d32 Sauter mean diameter [mm]
e coefficient of restitution [–]
E Young’s modulus [Pa]
F normalized drag force [–]
f pf particle-fluid interaction force (particle level, vector) [N]
f c particle-particle interaction force (vector) [N]
f d drag force (vector) [N]
Fp correction factor for poly-disperse effect [–]
Fpf particle-fluid interaction force (cell level, vector) [N]
g acceleration due to gravity (vector) [m=s2]
I; I intensity and mean intensity in the matrix of raw image

[–]
Im moment of inertia [kg �m2]
Lb bias of the segmentation location [pixel]
k stiffness coefficient [–]
kr rolling coefficient [–]
m mass of particle [kg]
N1 number of particles in a CFD cell [–]
N2 number of particles in interaction with i [–]
Ne equivalent number of particles in each sample [–]
Ns number of samples [–]
p pressure [Pa]
Ps global volume fraction of the smallest particles in a mix-

ture [–]
R particle radius [m]
Re error ratio [–]
Rr recovery ratio [–]
Rs segmentation ratio [–]
Rep Reynolds number of particle [–]
s;�s intensity and mean intensity in the matrix of template

particle [–]
Sf scale factor [pixel/mm]
S2 actual variance of particle volume fraction of the small-

est particles [–]
t;Dt time, time step size [s]
Tt tangential torque (vector) [N � s]
Tr rolling torque (vector) [N � s]
vp particle velocity (vector) [m/s]
vc;max maximum collision velocity [m/s]
Umf minimum fluidization velocity [m/s]
Ug superficial gas velocity [m/s]
V volume [m3]

x; y; z Cartesian coordinates [m]
yi diameter ratio [–]

Greek symbols
a damping ratio [–]
bpf momentum exchange coefficient [kg=ðm3 � sÞ]
c normalized cross-correlation coefficient [–]
� volume fraction [–]
g damping coefficient [–]
H particle granular temperature [m2=s2]
lg gas dynamic viscosity [Pa � s]
lfc friction coefficient [–]
q density [kg=m3]
r Poisson’s ratio [Pa � s]
sH Hertzian collision time [s]
sf fluid stress tensor [Pa]
x particle angular velocity (vector) [rad/s]

Subscripts
1;2 different particle classes, or time steps
2D two-dimensional space
eq equivalent
f fluid
i; j; k indices
n normal direction
p particle
t tangential direction

Abbreviations
CFD computational fluid dynamics
CoR coefficient of restitution
DEM discrete element method
DIA digital image analysis
FOV field of view
HSV hue-saturation-value color space
MPT magnetic particle tracking
MRI magnetic resonance imaging
PEPT positron emission particle tracking
PIV particle imaging velocimetry
PTV particle tracking velocimetry
PBM population balance modeling
RGB red-green-blue color space
SD standard deviation
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A strong emphasis has been placed on experimental studies of
particle behavior in mono-disperse fluidized beds, including parti-
cle image velocimetry (PIV) combined with digital image analysis
(DIA), particle tracking velocimetry (PTV), positron emission parti-
cle tracking (PEPT), magnetic particle tracking (MPT), and magnetic
resonance imaging (MRI) (Link et al., 2008; Holland et al., 2008;
Mohs et al., 2009; van Buijtenen et al., 2011; de Jong et al., 2012;
Hagemeier et al., 2015a,b; Jiang et al., 2017b). Depending on differ-
ent objectives of investigations, the measured variables associated
with particle dynamics (the motion of solid phase) were the parti-
cle velocity, the granular temperature, the particle cycle time and
residence time; and particle collision dynamics. The motion of par-
ticles in a fluidized bed is very complex due to movement of bub-
bles and random particle-particle or particle-wall interactions.
Therefore, a reliable and accurate tracking algorithm is required
to simultaneously track a large number of particles in such com-
plex granular flow (Hagemeier et al., 2015b; Jiang et al., 2017b).
Moreover, the PTV technique for the mono-disperse system can
be readily extended to poly-disperse systems of particles with dif-
ferent sizes marked by distinguishable colors. However, the PTV
technique is limited to visualized experimental configurations.

Indeed, poly-disperse systems (with particles of different sizes,
different densities, or both different sizes and densities) are com-
monly encountered in practical applications. As an important phe-
nomenon in poly-disperse fluidization, the segregation of particles
strongly influences particle formation processes; for instance, it is
essential to guarantee that smaller drug particles can be uniformly
blended into larger granules in fluidized bed granulation (Muzzio
et al., 2002). Due to their industrial importance, the segregation
and the mixing behavior have been experimentally studied using
various techniques, such as digital image analysis (DIA)
(Goldschmidt et al., 2003a; Olaofe et al., 2013), and frozen bed
sieving (Lu et al., 2003; Joseph et al., 2007). On the one hand, the
segregation state was determined by several competing factors
associated with particle dynamics and hydrodynamics, including
drag force, turbulence of gas-phase, particle granular temperature
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and particle collisions (Joseph et al., 2007). On the other hand, par-
ticle dynamics and hydrodynamics were strongly affected by the
size-ratio and the density-ratio of different particles. However,
published experimental studies of particle dynamics in poly-
disperse systems are very limited due to inherent difficulties in
measurement, especially tracking individual particles with differ-
ent sizes in fluidized beds.

In the last decade, the computational fluid dynamics-discrete
element method (CFD-DEM) has been extensively applied in simu-
lations of complex granular flow. The methodology and compre-
hensive numerical algorithms of CFD-DEM have been
systematically discussed in the reviews of Zhu et al. (2007), Deen
et al. (2007) and Zhou et al. (2010). The CFD-DEM approach can
capture the majority of macro-scale and micro-scale characteris-
tics of multi-phase flow, simultaneously providing an insight into
underlying physics at particle-scale. Moreover, some aspects that
are difficult to be captured in the traditional continuum descrip-
tion of the solid phase by the two-fluid method closed by the
kinetic theory of granular flow (Deen et al., 2007; Gidaspow,
1994), such as poly-dispersity, cohesion and non-spherical parti-
cles, can be readily incorporated in DEM. With the help of the
CFD-DEM approach, the segregation and the mixing behavior in
fluidized beds, characterized by the mixing index that indicates
the overall segregation state of mixture (Goldschmidt et al.,
2003a; Lacey, 1954), have been numerically studied and compared
with measurements (Bokkers et al., 2004; Feng et al., 2004;
Beetstra et al., 2007a; Olaofe et al., 2014). It was found that the
drag model for poly-disperse systems is important for the accuracy
of predictions of the mixing degree. Beetstra et al. (2007a) pro-
posed a correction factor, integrated diameter ratio and porosity,
based on lattice-Boltzmann simulations, which gives a significant
improvement over drag models for mono-disperse systems. Nota-
bly, the comparison of mixing index is not enough for the compre-
hensive validation of CFD-DEM simulations of poly-disperse
systems, since particle dynamics are not directly included in the
mixing index.

As a well established macroscopic approach to predict particle
formation processes, the population balance modeling (PBM) has
been widely used in investigations at industrial scale
(Ramkrishna, 2000; Immanuel and Doyle, 2005; Bück et al.,
2015). When microscopic particle dynamics from CFD-DEM simu-
lations are further integrated with the population balance model-
ing, a multi-scale model can be created to predict wet particle
granulation processes, leading to a better understanding of the
effects of process parameters and particle properties on critical
quality attributes (Goldschmidt et al., 2003b; Freireich et al.,
2011; Barrasso and Ramachandran, 2015). The performance of
the multi-scale coupling approach depends on the accuracy of
CFD-DEM simulations of poly-disperse particle systems, which
have to be validated not only with regard to segregation (or mix-
ing) behavior, but also to detailed particle dynamics.

The objective of this study is to develop a new color-PTV
method to study both particle dynamics and mixing behavior of
poly-disperse systems in a pseudo-2D fluidized bed. As an indis-
pensable aspect, the verification of particle segmentation algo-
rithm and particle tracking algorithm in the new color-PTV
methodology is performed based on CFD-DEM simulation data
with exactly the same particles and fluidization conditions. The
particle orientated features of the CFD-DEM approach are very
suitable to generate synthetic images for verifying the PTV method,
focusing on tracking individual particles. In addition, results of
color-PTV measurements, including profiles of particle volumetric
flux, distributions of particle velocity, distributions of granular
temperature and the mixing index, are used as a benchmark to
compare with the CFD-DEM simulations.
The structure of this contribution is: Section 2 illustrates the
experimental setup, mixture properties and the high-speed imag-
ing system. Section 3 introduces the new color-PTV methodology,
including color classification approach, particle segmentation algo-
rithm and integrated particle tracking algorithms. Section 4 sys-
tematically explains the verification of color-PTV methodology by
CFD-DEM simulation data, on the basis of quantitative criterion.
A short description of CFD-DEM simulation is also given in this sec-
tion. Section 5 presents and discusses the color-PTV measurement
results of one binary mixture case and one ternary mixture case.
Furthermore, detailed comparisons are performed with CFD-DEM
simulations using drag models with or without correction for the
effect of particle size dispersity. Section 6 presents conclusions
and outlook on further research.

2. Experimental setups

2.1. Pseudo-2D fluidized bed

Fluidization experiments were conducted in a laboratory scale
pseudo-2D fluidized bed, as shown schematically in Fig. 1. The
dimensions of the process chamber are 100 mm, 340 mm and 14
mm in width, height and depth, respectively. The front and side
walls were made of acrylic glass and the back wall was made of
aluminum. Pressurized air was used as fluidization gas. Accurate
control of inlet gas flow rate was achieved by application of a cal-
ibrated mass flow controller. A 3 mm porous plate distributor with
a mean pore size of 10 lmwas used to generate the relatively uni-
form gas distribution.

Three different fractions of c-alumina particles with diameter dp

of 3.0 mm, 2.5 mm and 1.8 mm (Geldart class D) were used in mea-
surements, and detailed particle properties and operation condi-
tions for two cases are summarized in Table 1. The size and
sphericity of particles were measured by Camsizer (Retsch GmbH).
The density of particles was measured by a pycnometer (GeoPyc
1360, Micromeritics GmbH). The coefficient of restitution (CoR)
of particles was evaluated from collision events that were gener-
ated by a vibratory feeder and captured by a high speed imaging
system (Jiang et al., 2017). The minimum fluidization velocities
Umf of different particles were calculated using the correlation of
Wen and Yu (1966). Regarding the initial conditions, different par-
ticles are vertically layered with equal volume of 20 cm3 in Case 1,
and horizontally layered with equal mass of 10.6 g in Case 2, as also
shown in Fig. 1. The static height in both cases was approximately
28.5 mm. The Sauter mean diameter d32 in both cases was approx-
imately 2.15 mm. In each case, the gas flow rate was manually
increased from zero to a superficial gas velocity of 2.8 m/s in
approximately 1 s. The gas flow velocities experienced fluctuations
of 0.02 m/s during the measurements.

2.2. Imaging system

Themotion of particles in the poly-disperse particle systemswas
observed with a high-speed color camera (Phantom Micro-310,
CMOS chip, 1280 � 800 pixels). It was operated at full spatial reso-
lution with a frame rate of 1000 fps, an exposure time of 1/8000 s
and a dynamic range of 12 bit. The imaging system was controlled
by the DaVis image acquisition software (LaVision). The entire
bed was illuminated by two continuous 400 W halogen lamps dur-
ing measurements. An optical lens with 60 mm focal length was
employed to achieve suitable size of field of view (FOV). The f-
number, relative focal length to effective aperture, was set at the
minimum value of 2.8, which yields a minimum depth of focus field
andmaximum light exposure during high speed imaging. The depth
of field was approximately 8 mm in current configuration.



Fig. 1. Sketch of laboratory-scale pseudo-2D fluidized bed configuration with apparatus dimensions and initial mixture characteristics.

Table 1
Particle properties, characteristics of mixtures and operation conditions.

dp [mm] qp [kg=m3] Sphericity [–] CoR e [–] Umf [m/s] Color

Particle properties
3.0 1478 0.97 0.79 1.05 Red
2.5 1450 0.97 0.81 0.91 Green
1.8 985 0.96 0.81 0.53 White

Case Bed mass [g] Height [mm] Ug [m/s]

3.0 mm 2.5 mm 1.8 mm

Characteristics of mixtures and operating conditions
1 – 20.2 13.5 28.5 2:8� 0:02
2 10.6 10.6 10.6 28.5 2:8� 0:02
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To fulfill the requirement of high spatial resolution for particle
tracking, the field of view was adjusted to 100� 170 mm2, which
corresponds to an approximate spatial resolution scale factor Sf
of 7.5 pixels/mm. This factor was obtained from the standard
geometry calibration process in the DaVis software. Note that only
170 mm bed height can be captured by the imaging system, as
marked in Fig. 1. However, most of fluidization characteristics
can be captured in this field of view.

The raw color images acquired from the high-speed camera
were in the red-green-blue (RGB) space, which is defined by the
three chromatic levels of red, green and blue additive primaries.
In this study, the maximum number of images stored in each mea-
surement was 5000 (5 s measurement time), which included the
initial (start-up) period.
3. Color-PTV methodology

For mono-disperse granular flow in pseudo-2D fluidized beds,
the methodology and applications of particle tracking velocimetry
have been discussed by Hagemeier et al. (2015b) and Jiang et al.
(2017b). An important aspect of PTV measurement in complex
granular flow is that both, the particle segmentation process and
the particle tracking process, have strong influence on the quality
and quantity of recovered particle scale information. In order to
extend this technique to poly-disperse systems, colored particles
were used in the measurements to identify different particle sizes,
as described in Section 2.1. Therefore, a color classification was
required to label particles of different sizes. In addition, a new inte-
grated particle tracking method was introduced to ensure high
performance under various fluidization conditions.
3.1. Color classification

Based on the study of Olaofe et al. (2013), classification of col-
ored particles in the hue-saturation-value (HSV) space is easier
and more accurate compared with classification in the RGB space,
because the HSV representation rearranges the geometry of RGB
(Cartesian) space to cylindrical-coordinate space in an attempt to
be more intuitive and perceptually. Thus, raw images in the RGB
space were firstly transformed into the HSV space based on stan-
dard function in MATLAB. After space transformation, the intensity
in each channel of the HSV space ranged from 0 to unity.



Fig. 2. The image properties of colored particles: (a) histograms of HSV channels for particles of different colors and the background; (b) mean intensity distributions in gray-
scale space along radii of different color particles (Curve fits are based on the sine equation: f ðxÞ ¼ a � sinðbxþ cÞ). (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)
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To find the characteristic of each color, statistical analysis of the
three HSV channels was conducted in sampling regions with only
particles of a single color (red, green or white). In this study, the
size of sampling region was 100� 100 pixels, and 10 different
sampling regions were manually selected for each color from raw
images. A similar approach was applied for the color of the back-
ground. Fig. 2(a) shows histograms of the three channels of the
HSV space for different colors. In each histogram, the vertical axis
relates to pixel number density and the horizontal axis is pixel
intensity. It can be seen that the intensity peaks of different colors
are separated. The criteria of color classification (range of thresh-
olds) used in this work are listed in Table 2. The color red can be
obviously distinguished by the saturation channel (S); whereas
the colors green and white can be distinguished by the hue channel
(H). Further, the information in the value channel (V) was mainly
applied to distinguish the background color. After the color classi-
fication, a label matrix was generated to store flags representing
four colors for each pixel of a raw image. The label matrix is impor-
Table 2
Main parameters used in Color-PTV method.

Parameter Value Unit

Color classification method
Thresholds of pixel intensity in three channels (H: hue, S: saturation, V: value)
Red H 2 ð0;0:1Þ; S 2 ð0:5;1Þ;V 2 ð0;0:5Þ –
Green H 2 ð0:25;0:5Þ; S 2 ð0:2;0:5Þ;V 2 ð0;0:6Þ –
White H 2 ð0;0:2Þ; S 2 ð0:2;0:5Þ;V 2 ð0:5;1Þ –
Background H 2 ð0:1;0:25Þ; S 2 ð0:1;0:25Þ;V 2 ð0:1;0:3Þ –

Particle segmentation method
Template particle size

ffiffiffi
2

p
� dp � Sf =2 pixel

Voronoi tracking method
Maximum

displacement radius
Ug=2 � Sf � Dt pixel

Relaxation probability method
Maximum

displacement radius
Ug=2 � Sf � Dt pixel

Neighboring radius 0:5 � Ug � Sf � Dt pixel
Quasi-rigidity radius 0:1 � Ug � Sf � Dt pixel
Threshold matching

probability
0.99 –

Dt is 1 ms according to the frame rate of the imaging system.
tant to accurately and quickly extract intensity information for dif-
ferent colors in the particle segmentation and tracking process.

Fig. 3 shows an example for the classification of three relatively
similar colors (green, white and background) from Case 1, in which
pixels belonging to white particles and green particles were
respectively extracted from the raw image using the label matrix.
Obviously, different colors are successfully distinguished and
shapes of particles are completely retained based on the criteria
spans, which is favorable to the segmentation process using
particle-mask correlation method (Jiang et al., 2017b).

3.2. Particle segmentation algorithm

The particle segmentation process is performed to identify indi-
vidual particle centers in PTV. After the particle segmentation, the
center and the color were stored for each particle. For the particle-
mask correlation segmentation, the normalized cross-correlation
coefficient c of the template particle (m�m pixels) with any inter-
rogation region of the same size in the raw image, centered at ðx; yÞ,
can be calculated by

cðx;yÞ ¼
Pxþm=2

i¼x�m=2

Pyþm=2
j¼y�m=2½Iði; jÞ � I�½sði; jÞ ��s�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPxþm=2

i¼x�m=2

Pyþm=2
j¼y�m=2½Iði; jÞ � I�2Pxþm=2

i¼x�m=2

Pyþm=2
j¼y�m=2½sði; jÞ ��s�2

q ;

ð1Þ
where Iði; jÞ is the intensity in the matrix of the interrogation region
in the raw image and sði; jÞ is the intensity in the matrix of the tem-
plate particle. I and �s are the space-averaged intensities of the inter-
rogation region of the raw image and the template particle,
respectively. The template particle matrix is a square matrix with
the column and row size m equal to

ffiffiffi
2

p
dp � Sf =2 pixels (rounding

to nearest integer).
The operation of Eq. (1) is based on a single matrix for every raw

image, while color images include three matrices for different
channels. To acquire a single matrix representing the characteris-
tics of the color image, raw images in the RGB space were con-
verted to gray-scale images by a luminosity method based on a
weighted sum of three matrices. The weight factors were 0.299,
0.587 and 0.114 for the channels of red, green and blue, respec-
tively (Ware, 2012). For the template particles of different sizes,



Fig. 3. Typical example of color classification (Case 1), including colors of white, green and background. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)
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the intensity features of pixels were also analyzed in gray-scale, as
shown in Fig. 2(b). For each particle color, the result of relative
intensity distribution along the particle radius was averaged from
10 template particles, which were manually selected from differ-
ent raw images. It can be found that there are enough differences
in the values and distributions of relative intensities for the seg-
mentation of particles with different colors. The corresponding
sine functions fitted from average data will be further used to
generate synthetic images in the verification of the segmentation
algorithm (Section 4).

3.3. Particle tracking algorithm

As discussed in the previous work (Jiang et al., 2017b), the
Voronoi tracking method and the relaxation probability method
both showed good performance in reconstructing particle motion
in mono-disperse systems. The Voronoi method paired identical
particles in two subsequent frames based on the minimum dis-
crepancy of Voronoi first order star, which represented the favor-
able features of Voronoi diagram. The relaxation probability
method paired identical particles in two subsequent frames based
on the maximum iterated matching probability, which was related
to the number of particles satisfying quasi-rigidity conditions.
Since each method has its own strengths for different particle
number density and fludization conditions, the tracking algorithm
was switched based on a threshold solid volume fraction that was
obtained by manual evaluation of sample images (Jiang et al.,
2017b).

In the present study, a new tracking approach, integrating the
Voronoi method and the relaxation probability method, was
applied to measure particle motion in poly-disperse systems.
Specifically, two tracking algorithms are separately used for each
image to get two sets of tracked particle velocities; then the two
data sets are merged to get final tracked velocities of individual
particles. The aim of this integration is to provide a more flexible
methodology that possesses high performance under different flow
conditions. Particles of different sizes are not discriminated in par-
ticle tracking to retain neighboring features that are beneficial to
both individual tracking algorithms. After successfully tracking,
the information about different sizes is assigned to each particle
based on the results of particle segmentation. The parameters used
in both, the Voronoi method and the relaxation probability method
are listed in Table 2. The Voronoi tracking method only relies on
the Voronoi diagram partitioning the two-dimensional Euclidean
plane. The maximum displacement radius was used to speed up
the algorithm. For the relaxation probability method, the relatively
large neighboring radius and the relatively flexible rigidity radius
were selected to accommodate the strong velocity fluctuations
caused by particle–particle collisions. The relatively high threshold
matching probability ensured the accuracy of evaluation. In addi-
tion, a double match filter was used in each single tracking algo-
rithm to guarantee that the target particle in the first frame had
a unique match in the second frame based on minimum displace-
ment. More detailed descriptions of these two tracking methods
can be found in Capart et al. (2002) and Baek and Lee (1996).

Based on the pairing information, the components of indi-
vidual instantaneous particle velocity vp can be calculated by
particle locations at the consecutive times 1 and 2, expressed
as

vp;xði; tÞ ¼ x2 � x1
Dt

; vp;yði; tÞ ¼ y2 � y1
Dt

; ð2Þ

where Dt is the time step. Based on the individual particle velocity
from PTV measurements, the granular temperature for a two-
dimensional space H2D can be calculated as

H2D ¼ ðHx þHyÞ=2; ð3Þ

Hj ¼ 1
Np

XNp

i¼1

ðvp;jði; tÞ � hvp;jðtÞiÞ2; j ¼ x; y; ð4Þ
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hvp;jðtÞi ¼ 1
Np

XNp

i¼1

vp;jði; tÞ: ð5Þ

Here, Np is the number of particles in the interrogation region used
for calculating the spatial average; vp;jði; tÞ is component j of the
instantaneous velocity of individual particle i and hvp;jðtÞi is the
instantaneous spatial average velocity in direction j. The value
and distribution of granular temperature are strongly affected by
the choice of interrogation region size, which actually determines
the level of the influence of macroscopic bubble motion on the local
microscopic particle velocity distribution; too small interrogation
region size may introduce large statistical errors in the evaluation
of measurements (Jiang et al., 2017b).

4. Verification of methodology by synthetic images from CFD-
DEM simulation

4.1. Principle

The accuracy of measurement is a quantitative performance
characteristic, expressing the agreement between a measurement
result and the value of the quantity to be measured. With regards
to the color-PTV measurements in fluidized beds, the measured
quantity is the velocity distribution of a large number of individual
particles under different fluidization conditions. According to Eq.
(2), the uncertainty sources associated with the color-PTV method-
ology include individual particle locations (related to the particle
segmentation algorithm) and the performance of particle pairing
in two consecutive frames (related to both the particle segmenta-
tion algorithm and the integrated particle tracking algorithm).
Whether particles can be identified and further tracked affects
the global performance of color-PTV. After successful tracking,
the evaluation of single particle velocity is directly influenced by
the biases of particle location segmentation.
Fig. 4. Schematic representation of the two-way verification/validation of PTV measure
segmentation algorithm based on Rs and Lb; (block B) describes the verification of the int
are marked in magenta to distinguish from correct vectors in the right sub-figure).
measurements to validate corresponding CFD-DEM simulations. (For interpretation of the
this article.)
Hence, suitable criteria are essential for quantitatively evaluat-
ing the performance of the algorithms used in the proposed color-
PTV methodology. First, the bias of individual location of seg-
mented particle was used to identify the uncertainty of evaluation
of individual particle velocity; this is defined as

Lb;i ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxi � xi;tÞ2 þ ðyi � yi;tÞ2

q
; ð6Þ

where ðxi; yiÞ is the location vector of segmented particle i, and
ðxi;t; yi;tÞ is its true location vector. Following the works of Baek
and Lee (1996) and Hassan et al. (1992), the segmentation ratio,
the recovery ratio and the error ratio were used as criteria to verify
the global performance of the particle segmentation algorithm and
the integrated particle tracking algorithm. Specifically, the segmen-
tation ratio Rs is defined as

Rs ¼ number of segmented particles
maximum number of possible particles

; ð7Þ

the recovery ratio Rr is defined as

Rr ¼ number of accurately recovered vectors
maximum number of possible vectors ; ð8Þ

and the error ratio Re is defined as

Re ¼ number of error vectors
total number of recovered vectors : ð9Þ

However, it is difficult to directly acquire all quantities necessary in
order to apply criteria from a large number of particles with com-
plex motion by experiments. Therefore, data from CFD-DEM simu-
lations, performed according to the experimental configuration
and operating conditions, were instead used to verify the color-
PTV methodology in the present work. The basic idea was similar
to the synthetic (standard) images approach for evaluating PIV algo-
ment and CFD-DEM simulation: (block A) illustrates the verification of the particle
egrated particle tracking algorithm based on Rr and Re (erroneously tracked vectors
The verified color-PTV methodology can be applied to images from fluidization
references to color in this figure legend, the reader is referred to the web version of
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rithms (Okamoto et al., 2000; Lecordier et al., 2001; de Jong et al.,
2012). The main advantages in using CFD-DEM simulation data are:

1. As a well established simulation method, CFD-DEM can prop-
erly describe the motion of particles in granular systems.

2. CFD-DEM simulation data can represent particle motion under
different fluidization conditions.

3. All required variables in Eqs. (6)–(9) can be easily retrieved
from CFD-DEM data.

Therefore, the use of CFD-DEM simulation data is complemen-
tary to real experimental images because it is a powerful approach
to investigate the effects of associated parameters (such as solid
volume fraction, particle velocity and granular temperature) on
the accuracy of particle velocity measurement, as well as to esti-
mate the intrinsic limitations of the methodology.

Fig. 4 shows the flow diagram of verification of the color-PTV
methodology based on synthetic images generating from simula-
tion data, including block A for particle segmentation and block B
for integrated particle tracking. After verification, the color-PTV
methodology can be used to evaluate particle dynamics and mix-
ing behavior based on color images acquired from fluidization
measurements in the pseudo-2D fluidized bed. In addition, mea-
surement data can be used to validate corresponding CFD-DEM
simulations of poly-disperse particle systems.

Corresponding to block A, synthetic images were generated to
evaluate the performance of the segmentation algorithm by means
of the bias Lb and the segmentation ratio Rs. In order to be close to
pseudo-2D conditions, only particles in the first layer were selected
from three-dimensional CFD-DEM simulation data to generate
two-dimensional synthetic images, which means that the normal
distances from the centers of selected particles to the front wall
were smaller than 3 mm. According to the descending order of
the distances to the front wall, contours of individual particles with
different sizes were created in each image based on the corre-
sponding relative intensity distribution from Fig. 2(b). By this
approach, the overlap between particles that is encountered in
measurement images was intentionally introduced to inspect its
effect on the particle segmentation. According to the analysis of
measurement images, 0.1% noisy pixels were randomly introduced
to fit the real image quality. In terms of spatial resolution, the gray-
scale synthetic image was the same as the raw image from mea-
surements. Based on the particle-mask correlation segmentation,
three template particles were separately used to process each syn-
thetic image and to obtain the segmented locations of particles
with different sizes. Then, the bias Lb and the segmentation ratio
Rs were evaluated by the comparison of individual particles.

Corresponding to block B, the integrated particle tracking algo-
rithm was verified by means of the recovery ratio Rr and the error
ratio Re. Using a unique identification number (ID) of each particle
in the DEM solver, particle velocities can be easily evaluated from
the location of each individual particle before and after a time step
(Eq. (2)). However, a sequential labeling process was required to
extract the pairing information that obtained form integrated
PTV method. In the first frame, unique IDs were assigned to all seg-
mented particles. After successful pairing, each matched candidate
particle in the second frame received the same ID as in the first
frame. The candidate particle without a valid pair received a new
ID. Then, tracked particle velocities can be also evaluated by Eq.
(2). The process was repeated for all image sequences to obtain
the trajectories of all individual particles. In order to gain the
numerators in Eqs. (8) and (9), particle velocities in the same time
step obtained from PTV and CFD-DEM were compared one by one
according to the locations and the lengths of vectors.

The thorough analysis of segmentation ratio, recovery ratio and
error ratio with respect to particle velocity, solid volume fraction
and granular temperature can be further conducted to assess the
applicability of the color-PTV method to measure the dynamics
of poly-disperse particle systems in different fluidization
conditions.

4.2. CFD-DEM simulation

OpenFOAM and LIGGGHTS (Goniva et al., 2012) were used to
conduct the CFD-DEM simulations based on same operation condi-
tions and particle properties as in the measurements. Governing
equations are summarized in Table A.1. All models and boundary
conditions used were previously published, e.g. Zhu et al. (2007),
Zhou et al. (2010), Goniva et al. (2012) and Jiang et al. (2017a).
Some numerical techniques were described by Link et al. (2005),
Zhu et al. (2007) and Goniva et al. (2012).

In CFD-DEM coupling, the momentum exchange between the
solid phase and the fluid phase, characterized by the momentum
exchange coefficient bpf , can be calculated by various drag models.
A detailed overview of drag force equations for mono-disperse and
poly-disperse systems was given by Beetstra et al. (2007b). The
drag force f d;i, due to the fluid-solid friction at the surface of parti-
cles, can be evaluated on the single particle scale. An accurate drag
model is of great importance for the performance in the prediction
of complex particle-fluid flows, especially in poly-disperse sys-
tems. In the example of a binary system, if the volume fraction of
small particles is somewhat smaller than the averaged solid vol-
ume fraction (including both large and small particles), then an
over-prediction of the drag force on small particles results. Inver-
sely, the drag force is under-predicted for the large particles. A cor-
rection for the effect of poly-dispersity, as listed in Table 3, was
essential to improve the accuracy of simulations, as discussed by
Beetstra et al. (2007b,a). The correction factor depends on the solid
and fluid volume fractions (�s and �f ), and on the ratio yi of the
diameter of a certain class of particles dp;i and the Sauter mean
diameter of the entire particle system d32. The drag model
expressed by Eq. (18) was used in the CFD-DEM simulation to
obtain data for verification of the color-PTV methodology.

The physical properties and simulation parameters are listed in
Table 4. Particle interactions were calculated by the Hertzian con-
tact model with tangential history tracking (Di Renzo and Di Maio,
2004). The equations of the contact model are summarized in
Table A.2. In this soft-sphere contact model, the effect of spring
and dash-pot appear through stiffness k and damping coefficient
g, which were determined by the physical material properties of
Poisson ratio r, Young’s modulus E and the coefficient of restitu-
tion e. The coefficients of restitution for particle-particle interac-
tion and particle-wall interaction were considered identical in
this study. The particles were assumed to be less stiff than they
are in reality, in order to avoid the requirement to use excessively
small DEM time steps. The Young’s modulus of 108 Pa was used in
this study, which provided negligible differences as compared to
the simulation with the typical Young’s modulus of 1010 Pa of c-
alumina particles (Müller et al., 2013). Artificial softening of parti-
cles is universally used in CFD-DEM simulations of gas-solid flow
in fluidized beds, because the effect of stiffness on particle motion
is secondary compared with the particle-fluid interactions (Tsuji
et al., 1993; Kuo et al., 2002; Yang et al., 2014; Boyce et al.,
2017). Coulomb’s friction law was applied to account for particle
sliding, in which the friction coefficient lf was taken from Fries
et al. (2013). The rolling coefficient kr in the directional constant
rolling friction model (Ai et al., 2011) was taken from Goniva
et al. (2012).

The chamber was divided into 20� 100� 3 cells in x, y and z
directions, respectively. The size ratio dcell=d32 was approximately
2.3 for both simulated cases, where dcell ¼

ffiffiffiffiffiffiffiffiffi
Vcell

3
p

was an effective



Table 3
Particle-fluid interactions models.

Momentum exchange coefficient bpf

bpf ¼
18lg�s�f

d2
p

Fð�s;RepÞ

(14)

Drag force on individual particle f d;i

f d;i ¼ Vp;i

�s
bpf ðu� vp;iÞ

(15)

Mono-disperse system (Beetstra et al., 2007b)
Normalized drag force Fmonoð�s;RepÞ

Fmono ¼ 10�s
�2f

þ �2f ð1þ 1:5�0:5s Þ þ 0:413Rep
24�2f

��1
f þ 3�s�f þ 8:4Re�0:343

p

1þ 103�s � Re�ð1þ4�s Þ=2
p

" # (16)

Reynolds number of particle Rep

Rep ¼ �fqf u� vp;i

�� ��dp

lf

(17)

Poly-disperse system (Beetstra et al., 2007a)
Normalized drag force Fð�s;RepÞ

F ¼ Fp � Fmono

(18)

with d32 instead of dp in Eq. (17) and correction factor for the effect of size
dispersity Fp

Fp ¼ �f yi þ �sy2i þ 0:064�f y3i

(19)

Sauter mean diameter d32

d32 ¼
Pc

i¼1Nid
3
p;iPc

i¼1Nid
2
p;i

(20)

Diameter ratio yi

yi ¼
dp;i

d32

(21)

Table 4
Physical properties and simulation parameters.

Parameter Value Unit

Simulation chamber
Dimensions in x, y, z directions 100� 340� 14 mm
Grid numbers in x, y, z directions 20� 100� 3 –
Size ratio dcell=d32 2.3 –

2.0, 2.7 (independence study) –

Particle phase
Contact model: hertzian, inelastic, with friction, rolling and tangential history
Particle diameter dp Table 1 mm
Particle density qp Table 1 kg=m3

Coefficient of restitution e Table 1 –
Young’s modulus E 108 Pa

Poisson ratio r 0.25 –
Friction coefficient lf 0.1 –

Rolling coefficient kr 0.1 –

Gas phase
Gas density 1.2 kg=m3

Dynamic viscosity 1:84� 10�5 Pa�s
Superficial gas velocity 2.8 m/s
Boundary condition Slip –

Coupling simulation parameters
CFD time step DtCFD 5� 10�5 s

DEM time step DtDEM 10�6 s

Simulation time tsim 30 s
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length based on the volume of each CFD cell. For the purpose of
examination of grid independence (results shown in Section 5),
two further CFD grids with size ratios of 2.0 (finer grid) and 2.7
(coarser grid) were also built.

The accurate simulation of granular flow in fluidized beds is
very sensitive to the correct calculation of cell solid volume frac-
tion (Peng et al., 2014). According to the size ratio of 2.3, the solid
volume fraction was calculated by the ‘‘divided” method (Goniva
et al., 2012), which generated smooth solid volume fraction fields.
In this method, particles are first divided to equal small parts by a
series of distributed marker points. Then, the portion of particle
volume located in a certain CFD cell is calculated from the number
of respective marker points.

The time step should be set smaller than a critical value to con-
form with physical laws and guarantee stability of the DEM and
CFD solvers. In the CFD, the Pressure-Implicit with Split-Operator
(PISO) pressure-velocity coupling algorithm was used to solve
the Navier-Stokes equations for unsteady flow. The k-� model
was applied to simulate mean flow characteristics for turbulent
conditions. The CFD time step was set to 5� 10�5 s, which ensured
that the maximum Courant number was less than 0.5. The collision
time sH can be estimated based on Hertz contact theory (Kobayashi
et al., 2013), expressed as:

sH ¼ 2:87
m2

eq

ReqE
2
eqvc;max

 !0:2

: ð10Þ

Assuming a maximum collision velocity vc;max of 1.5 m/s in the
whole bed (Jiang et al., 2017b), the estimated collision time sH for
two 1.8 mm particles (the smallest objects occurring in the system)
is approximately 2:6� 10�5 s. Hence, the DEM time step was
selected as 10�6 s, less than sH=20 for the entire granular system,
to ensure an accurate performance of the contact model. The cou-
pling interval between DEM and CFD solvers was 50 times the DEM
time step.

CFD-DEM simulation data of Case 2 with Eq. (18) (ternary mix-
ture), extracted from 0 to 30 s with an interval of 1 ms, were used
to verify the color-PTV methodology. The extraction interval was
the same as the interval between two subsequent image frames
in real measurements. Similarly to the start-up period in the real
measurement, the superficial gas velocity in the simulation was
linearly increased from 0 to 2.8 m/s in the time period of 1 s. In
order to include a wider range of particle dynamics, data was
extracted from the simulation for verification at more points (in
time) than in the real measurement.

4.3. Verification of segmentation algorithm

Fig. 5 shows the cumulative distributions of bias Lb;i of individ-
ual segmented locations according to statistical analysis of approx-
imately 2:5� 107 particles. Due to the discrete nature of digital
images, possible bias values were 0, 1,

ffiffiffi
2

p
, 2,

ffiffiffi
5

p
;
ffiffiffi
8

p
, and 3 pixels.

When the segmented particle location coincides with the corre-
sponding particle location in DEM data, the bias Lb;i is zero. Gener-
ally, the particle-mask correlation segmentation algorithm shows
good performance for particles with different sizes. More than 89%
of all particles can be identified without any error. The cumulative



Fig. 5. Cumulative distribution of the bias of particle-mask correlation segmentation (statistical analysis of approximately 2:5� 107 particles).
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distributions for all particles reaches unity at
ffiffiffi
8

p
pixels, which

indicates the high precision of particle segmentation. Smaller par-
ticles are more accurately located compared with larger particles.
The mean values of bias Lb;i of all particles, red particles, green par-
ticles and white particles were 0.11, 0.31, 0.13, and 0.07 pixel,
respectively.

For the particle-mask correlation approach, the segmentation
ratio was mainly influenced by the solid volume fraction that
was calculated as the ratio of the total particle volume to the vol-
ume of the investigation region. To this end, the full image was
divided into small investigation regions with a size of 75� 75 pix-
els, and an overlap of 2/3 was set between two neighboring regions
to obtain better spatial resolution. The depth of investigation
region was considered as the Sauter mean diameter d32 in this
study. This method of partitioning the investigation region will
be used in all following post-processing. For the case of verification
study, the mean value of solid volume fraction was 0.136 with a
standard deviation of 0.120 for all data from 30 s simulation time.

Fig. 6(a) shows the segmentation ratio Rs for all three sizes of
particles with respect to solid volume fraction �s. The points are
averages, where the two dash lines define the region covered by
the standard deviation of data. Globally, the segmentation ratio
for all particles is close to unity when the solid volume fraction
is lower than 0.2. Then, there is a decreasing tendency of the seg-
mentation ratio when the solid volume fraction further increases
from 0.2 to 0.5. The standard deviation of segmentation ratio expe-
riences a similar tend: it is small when the solid volume fraction is
smaller than 0.2 and gradually increases after the solid volume
exceeds 0.2. In fact, the standard deviation can be considered as
a quantification of precision in respect to the random errors of
measurements. Reasonably, the inevitable overlap of particles in
the dense region led to a decrease of segmentation ratio and an
increase of the corresponding standard deviation, since the
segmentation algorithm depends on intensity distribution on the
surface of individual particles.

Fig. 6(b) shows the influence of different sizes (colors) on the
segmentation ratio. Obviously, the smaller the particle size,
the better the performance of particle segmentation, because the
gray-scale intensity distribution on the surface of small particles
is more pronounced compared to other particles (as shown in
Fig. 2(b)). In other words, the more pronounced the intensity distri-
bution, the less is the interference of overlap of particles with the
segmentation algorithm.

Nevertheless, the particle segmentation algorithm shows very
good accuracy and precision in the primary range of solid volume
fraction. For the largest solid volume fraction, the lowest value of
segmentation ratio of red particles is still larger than approxi-
mately 0.75. Notably, the intensity of individual particles is also
affected by the shadowing effect of neighboring particles and the
motion blur effect in real fluidization measurements, which were
not included in the current verification study of particle segmenta-
tion. There should be a certain decrease in segmentation ratio to
take account of these two negative effects in real measurements.

4.4. Verification of integrated tracking algorithm

Fig. 7 shows the influence of different tracking algorithms on
the recovery ratio with respect to solid volume fraction. The Voro-
noi method is more suitable in the dense region, in terms of both
accuracy and precision. However, if the solid volume fraction is
lower than 0.2, there is a large decrease in recovery ratio. In the
dilute region, the mean free paths of neighboring particles (the
extremities of Voronoi first order stars) are relatively large. Hence,
the loss of single particles in the dilute region, caused by motion in



Fig. 6. Segmentation ratio Rs: (a) all particles with standard deviation, (b) particles of different sizes (colors). (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)

Fig. 7. Comparison of recovery ratio Rr from the integrated tracking method, the Voronoi tracking method and the relaxation probability tracking method (standard
deviations for the different methods are labeled by two dashed lines of corresponding colors). (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)
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third direction vertically to the front wall, can generate relatively
large discrepancies of several nearby Voronoi first order stars, com-
pared to the discrepancies generated by the in-plane motion of
particles. This instability of Voronoi first order stars may cause
erroneous pairing of target particles in the dilute region. However,
the negative effect of this instability is very small in the dense
region due to the naturally shorter mean free paths.

In case of the relaxation probability tracking method, the recov-
ery ratio decreases gradually with increasing solid volume fraction,
whereas the standard deviation is larger than that of the Voronoi
method for most solid volume fractions. Remarkably, the Voronoi
method and the relaxation method are complementary in terms
of the recovery ratio, especially in the dilute region (solid volume
fraction smaller than 0.1). As a consequence, the final recovery
ratio obtained by the integrated tracking method is very close to
unity in almost the entire range of solid volume fractions. More-
over, the standard deviation of the integrated tracking method is
smaller than that of either single tracking method. Hence, use of
the integrated particle tracking helps to achieve high performance
for all solid volume fractions. For all three tracking methods, the



Fig. 8. Recovery ratio Rr and error ratio Re: (a) influence of particle velocity, (b) influence of particle granular temperature.
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error ratio was lower than 0.005 and had no apparent dependence
on the solid volume fraction.

It should be noted that the recovery ratio and error ratio were
not only influenced by the solid volume fraction, but were also sig-
nificantly affected by the local particle dynamics such as particle
velocity and particle granular temperature. For the parameters of
the verification study, the mean value of particle velocity was
0.311 m/s with a standard deviation of 0.206 m/s; and the mean
value of the square root of particle granular temperature was
0.132 m/s with a standard deviation of 0.084 m/s.

Fig. 8(a) shows the recovery ratio (left y axis) and the error ratio
(right y axis) with respect to the local average particle velocity
(magnitude) from the integrated method. When the particle veloc-
ity exceeds approximately 0.7 m/s, the recovery ratio evaluated by
the integrated method deviates from desired value of unity and
becomes more scattered. The error ratio slowly increases to a max-
imum value of approximately 0.006 as the particle velocity
increases from 0 to 0.7 m/s. Fig. 8(b) shows the recovery ratio
and the error ratio with respect to the local average square root
of particle granular temperature. When the square root of particle
granular temperature increases from 0 to 0.6 m/s, the recovery
ratio decreases from unity to 0.95; and the error ratio increases
from 0 to 0.012. As the square root of particle granular temperature
further increases, large fluctuations appear in both the recovery
ratio and error ratio due to the low number of samples in this
range. Based on statistical analysis, only a tiny fraction (less than
1%) of the investigation regions can experience velocity larger than
0.7 m/s or square root of granular temperature larger than 0.6 m/s.
In total, the integrated particle tracking algorithm was able to
achieve very good recovery ratio in most of operating conditions.
The increase of error ratio with increasing local particle velocity
and granular temperature can be explained by the decrease of sta-
bility of neighboring structures associated with the mean free path
(solid volume fraction).

According to the verification results, the color-PTV methodol-
ogy can identify and track particles of different sizes with high
accuracy and precision. Remarkably, the final recovery ratio
obtained by the integrated tracking method is very close to unity
for all solid volume fractions due to the good complementarity of
Voronoi and relaxation probability tracking. Since the well-
established CFD-DEM simulation can provide very similar fluidiza-
tion conditions as observed in real measurements, including the
solid volume fraction, the local velocity and the local particle gran-
ular temperate, measurements of poly-disperse particle dynamics
using the color-PTV methodology are expected to be reasonably
trustworthy. Moreover, CFD-DEM simulation data can be very use-
ful in designing experiments and optimizing the parameters of the
segmentation and the tracking algorithms. In order to achieve high
segmentation ratio and low bias, the size of template particle in the
segmentation can be adjusted according to the characteristics of
intensity distribution. The frame rate of the high-speed camera
has to be increased when insufficient recovery ratio appears in
the primary ranges of solid volume fraction, particle velocity and
granular temperature. In the present work, the parameters listed
in Table 2 have been optimized based on such preliminary studies.
5. Results and discussion

We will present results from color-PTV measurements of Case 1
(binary mixture) and Case 2 (ternary mixture), in form of the time-
averaged particle volumetric flux, distributions of individual parti-
cle velocity, distributions of particle granular temperature and the
mixing index. In addition, comparisons with CFD-DEM simulations
using two drag models with (Eq. (18)) or without (Eq. (16)) correc-
tion for poly-dispersity will be conducted. It is noted that only par-
ticles in the first layer were extracted from simulation data to be
close to pseudo-2D conditions of measurements. Specifically, the
normal distances from the centers of particles to the front wall
were smaller than 3 mm. On the basis of visual observations, the
flow in both investigated cases can be assigned to the slugging
regime, with separated slugs (bullet-shaped voids) and bubbles
filling the entire cross-section of the pseudo-2D fluidized bed. Tur-
bulent fluidization flow regime was not observed in either of the
two cases.

5.1. Particle volumetric flux

As discussed by Tang et al. (2016) and Jiang et al. (2017b), the
time-averaged particle velocity profiles can be spurious to describe
particle circulation pattern, because the contribution of few parti-
cles with really high velocity to the global motion of particles is
overestimated in the dilute region. Therefore, the volumetric flux
of particles, i.e. the volume flow rate per unit area m3=ðm2 � sÞ,
was evaluated to accurately reveal the global particle circulation
motion. With regard to PTV measurements, the volumetric flux
of particles was calculated by the product of solid volume fraction
and average particle velocity in each investigation region. The size
and arrangement of investigation regions is the same as in the ver-
ification study.
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The size of CFD grid may affect the mapping and evaluation of
solid volume fraction field and the numerical solution of turbulent
gas flow with solid particles. Clearly, grid independence needs to
be established, before one can conduct the qualitative or quantita-
tive analysis of CFD-DEM simulations in confidence. The study of
grid independence was performed only using the drag model with
correction for size dispersity in Case 1. Fig. 9(a) shows the time-
averaged particle volumetic flux profiles over 5 s from the mea-
surement and simulations with three sets of CFD grid. The data
points are averaged from investigation regions in a height range
of 450–525 pixels and are assigned to the right boundary of inves-
Fig. 9. Time-averaged particle volumetric flux: (a) profiles in vertical and horizontal direc
independence study for three CFD grids, (b) profiles for Case 2 at a height range of 450–5
simulation (Eq. (18)).
tigation region in x axis. The simulations with three different grid
sizes predict almost the same profiles of volumetric particle flux in
both the vertical and the horizontal direction. Therefore, the CFD
grid with size ratio dcell=d32 of 2.3 was used together with the ‘‘di-
vided” void-fraction approach in this study.

Fig. 9(c) shows the results of time-averaged particle circulation
for Case 1, and the vector for time-averaged particle volumetric
flux is assigned to the bottom right corner of each investigation
region. Obviously, two nearly symmetric vortices can be observed
in the results of both the experiment and the simulation (Eq. (18)),
which implies that 5 s time is enough to investigate the circulation
tions for Case 1 at a height range of 450–525 pixels, together with the results of grid
25 pixels and (c) global circulation patterns for Case 1 from the experiment and the
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motion in this pseudo-2D fluidized bed. Only minor difference
exists between the heights of the centers of the two vortices
obtained from the experiment and the simulation. The center of
the left vortex is located at a height of about 240 pixels, and the
center of the right vortex is located at about 220 pixels. The top
boundary of the two vortices starts to form at a height of about
450 pixels, which is also the stably fluctuating height of the dense
bed surface. Bubbles or slugs erupt at this surface, accelerating par-
ticles into the free-board and resulting in horizontal transport
towards the side walls. Globally, particles are transported upwards
in the center of bed and slide downwards close the side walls,
which is associated with the inception, coalescence and eruption
of traveling bubbles or slugs at different heights of the fluidized
bed. However, it is important to note that instantaneous flow pat-
terns may differ significantly from the time-averaged circulation
pattern due to the strongly chaotic motion of bubbles and particles.
This result for particle circulation is very similar to published
observations for mono-disperse systems using PIV and PTV mea-
surements (Laverman et al., 2008; Tang et al., 2016; Jiang et al.,
2017b). The global particle circulation for Case 2 also shows two
nearly symmetric vortices, but their centers were located lower
compared to Case 1 (not shown in the figure).

The results from Eqs. (16) and (18) in Fig. 9(a) shows that the
accuracy of simulation is improved by correction for size poly-
dispersity, especially in the horizontal direction. Obviously, the
simulation using Eq. (16) underestimates the horizontal transport
of particles due to eruptions of bubbles or slugs near the dense
bed surface. In this context, it should be noted that the height
range of 450–525 pixels was somewhat higher than the upper sur-
face of the fluidized bed. The variation trend in the horizontal
direction of all methods indicate the approximate reflection sym-
metry of the two vortices. However, the simulation with Eq. (18)
underestimates the motion of particles sliding downwards the side
walls. As shown in Fig. 9(b), the general shapes of profiles are
Fig. 10. Comparisons of density distributions of the individual particle velocity (includin
particles of Case 1, (b) green particles of Case 1; (c) white particles of Case 2, (d) green par
color in this figure legend, the reader is referred to the web version of this article.)
similar with Case 1. The decreases of particle volumetric fluxes in
both horizontal and vertical directions were caused by the reduces
of heights of two vortices.

5.2. Distributions of particle velocity and particle granular
temperature

The superiority of color-PTV measurement lies in its ability to
reconstruct instantaneous velocities of particles with different
sizes. Hence, the comparisons of density distributions of the indi-
vidual velocities of particle with different sizes were performed
in both vertical and horizontal directions, as shown in Fig. 10.
The density distributions were evaluated by particles appearing
at heights ranging from 450 to 525 pixels at all time steps. The
total number of time steps is 5000 for both experiments and sim-
ulations. From the measurement results, the transport of all parti-
cles in the vertical direction is stronger than that in the horizontal
direction at this bed height. The density distributions are approxi-
mately symmetric with respect to the vertical center line. In this
height range, the velocities of small particles are slightly larger
than those of large particles in the vertical direction; and, inver-
sely, the velocities of small particles are slightly lower in horizontal
direction. The differences of particle velocities in both vertical and
horizontal directions are relatively small at this height range, com-
pared with the profiles of volumetric flux in Fig. 9(a) and (b). Most
of results from simulations using Eq. (18) are more conform to the
measurement results, compared with the drag model without cor-
rection for the effect of size poly-dispersity. This correction
improved the agreement with measurement results by avoiding
the over-estimation of drag force for small particles and the
under-estimation of drag force for large particles.

On the basis of Eqs. (3)–(5), the color-PTV measurement can
also provide distinguishable information about particle granular
temperature for particles with different sizes. The particle granular
g vertical and horizontal directions) at a height range of 450–525 pixels: (a) white
ticles of Case 2 and (e) red particles of Case 2. (For interpretation of the references to



Fig. 11. Comparisons of cumulative distributions of the square root of granular temperature for different classes of particles in the entire field of view: (a) white and green
particles for Case 1 and (b) white, green and red particles for Case 2. (For interpretation of the references to color in this figure legend, the reader is referred to the web version
of this article.)
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temperature corresponds to the relative velocity of particles that
may drive diffusive mixing and particle collisions. Fig. 11(a) shows
the comparison of cumulative distributions of the square root of
particle granular temperature of different particles for Case 1. Dif-
ferent to Fig. 10, the cumulative distributions were obtained from
all investigation regions in the field of view at all time steps.
According to the color-PTV measurement, the granular tempera-
ture of small particles is higher than that of large particles. Com-
pared to the result from Eq. (16), the correction for size
dispersity reduces the difference between the curves for small
and large particles, which is in good accordance with measurement
data. Fig. 11(b) shows the results for Case 2. The experimental data
for red and green particles are almost coincide. The prediction
using Eq. (18) is, again, better than that with Eq. (16).
5.3. Mixing index

In this work, the mixing degree of particles was investigated by
the improved Lacey index that was proposed by Feng et al. (2004).
The index is based on the statistical analysis of variances of volume
fraction of different particles in different samples, which can be
given as

M ¼ S20 � S2

S20 � S2r
; ð11Þ

where S2 is the actual variance; S20 ¼ Psð1� PsÞ and

S2r ¼ Psð1� PsÞ=Ne, respectively, represented the variances for the
completely segregated state (maximum) and the well mixed state
(minimum). The variable Ps is the global volume fraction of the
smallest particle in a mixture. Originally (Lacey, 1954), the index
was used for mono-disperse systems. In the poly-disperse system,
the concept of the equivalent number Ne is used. To keep the same
total particle volume in the sample, the equivalent number Ne can
be evaluated based on the number of particles in each size class
and the corresponding ratio of the volume of single particle in this
size class to the volume of single smallest particle. The size of the
sample is fixed, while the contribution of the sample to the variance
S2 is weighted according to the equivalent number of particles. If ci
is defined as the volume fraction of the smallest particles in each
sample i and Ns is the number of samples, the variance S2 can be
expressed as

S2 ¼ 1
kt

XNs

i¼1

ks;i � ðci � PsÞ2; ð12Þ

kt ¼
XNs

i¼1

ks;i ð13Þ

where ks;i is the weighting factor in the sample i and kt is the total
weighting factor. ks;i can be calculated as the ratio of the equivalent
number of particles in the sample i to the maximum equivalent
number of particles for all samples at each time step (Ne;i=Ne;max).
The mixing index obtained from Eq. (11) is by definition zero for
a completely segregated mixture and increases to unity for a fully
random mixture.

Based on a sensitivity study, sample size was set equal to the
size of the investigation region, which can satisfy the conditions
that the mixing index should be close to one for the well-mixed
state and close to zero for the fully segregated state. However,
due to interlaced arrangements in the interface of different layers
of particles, the mixing indices in the initial states of both the mea-
surement and the simulation are slightly larger than zero in the
results, as shown in Fig. 12. The maximum mixing index is lower
than unity and the perfect mixing state cannot be reached under
the measurement conditions.

Fig. 12(a) shows comparisons of mixing index for Case 1 in the
time period from zero to 5 s. According to the color-PTV measure-
ment, the mixing index gradually increases from 0.15 to an equilib-
rium state with a mean value of approximately 0.9. The duration of
the increasing stage of mixing index is approximately 1.5 s. After
that, the maximum fluctuation of mixing index remains within
0.1. The simulation using Eq. (18) predicts qualitatively and quan-
titative comparable results with the color-PTV experiment. The
inserted snapshots from color-PTV and CFD-DEM with Eq. (18) at
time 2 s show the particle distributions at the corresponding mix-
ing indices. The simulation using Eq. (16) gives relatively large
deviations of both, the mean value and the fluctuations of mixing
index, especially after the increasing mixedness stage. Compared
with the cumulative distribution of the square root of particle



Fig. 12. Comparisons of mixing index: (a) Case 1, and (b) Case 2 (snapshots at 2 s are included to visualize characteristic results of the different methods).
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granular temperature (Fig. 11(a)), the large difference of particle
granular temperature between small and large particles by Eq.
(16) implied strong relative motions between particles of different
sizes, resulting in the decrease and the fluctuation of mixing index.

For Case 2, red particles and green particles were considered as
one component when calculating the volume fraction of white par-
ticles in the mixture. As shown in Fig. 12(b), the final mixing state
for Case 2 is much different from that of Case 1, although they have
very similar initial bed height, Sauter mean diameter, bed mass,
and the same superficial gas velocity. According to the color-PTV
measurement, the mean value of mixing index after 1.5 s is
approximately 0.75; and the maximum spread is larger than 0.2.
The final mixing index is, thus, affected by the initial packing state.
The ternary system is more difficult to be brought and kept at the
relatively equilibrium than the binary system under the same flu-
idization conditions. The simulation using Eq. (18) still shows bet-
ter performance than that based on Eq. (16). As shown in the
snapshot for Eq. (16), it is difficult for small particles to enter into
and stay in the void space between large particles in the corre-
sponding CFD-DEM, leading to the under-estimation and the large
fluctuation of the mixing index.
6. Conclusion and outlook

In this study, we measured the dynamics of poly-disperse par-
ticle systems in a pseudo-2D fluidized bed by a new color-PTV
approach. On the basis of four quantitative criteria, the color-PTV
methodology, including both particle segmentation algorithm
and particle tracking algorithm, was comprehensively verified
using CFD-DEM simulation data obtained for exactly the same par-
ticles and fluidization conditions. For various solid volume frac-
tions, local particle velocities and local particle granular
temperatures, the results of verification demonstrate the high
accuracy and precision of color-PTV methodology in measuring
velocities of individual particles with different sizes.

In the poly-disperse system, the global particle circulation in
slugging flow regime can be well represented using the time-
averaged volumetric particle flux. Similarly to observations in
mono-disperse systems, two reversely turning but nearly symmet-
ric vortices support the vertical and horizontal transport of parti-
cles. The change in mixing state, from the stage of increasing
mixedness to quasi-equilibrium, can be quantitatively evaluated
by the improved Lacey index for poly-disperse systems. The



Table A.2
Equations used in the soft-sphere contact model and the particle rolling friction
model.

Hertz contact forces and rolling friction torque (in Eqs. (A.4) and (A.5))

Contact force in normal direction f nc;ij

f nc;ij ¼ �kndn � gnjv r;ij � n
� �

� n (A.7)

Contact force in tangential direction f tc;ij

f tc;ij ¼
�ktdt � gtv s;ij; f tc;ij

��� ��� < lfc f
n
c;ij

��� ���
�lfc f

n
c;ij

��� ���t; f tc;ij
��� ��� > lfc f

n
c;ij

��� ���
8><
>: (A.8)

Friction torque f nc;ij

T r;ij ¼ �krkndn
xr;ij

xr;ij

�� ��Req (A.9)

Model coefficients
Normal stiffness kn

kn ¼ 4
3
Eeq

ffiffiffiffiffiffiffiffiffiffiffi
Reqdn

q
(A.10)

Tangential stiffness kt

kt ¼ 8Geq

ffiffiffiffiffiffiffiffiffiffiffi
Reqdn

q
(A.11)

Normal damping gn

gn ¼ a
ffiffiffiffiffiffiffiffiffiffiffiffiffi
knmeq

q
(A.12)

Tangential damping gt

gt ¼
ffiffiffi
2
3

r
a

ffiffiffiffiffiffiffiffiffiffiffiffi
ktmeq

q (A.13)

Damping ratio aðeÞ
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difference in granular temperature for particles of different sizes
may lead to deviations of mixing index from unity and correspond-
ing fluctuations. The final mixing state is influenced by the initial
mixture conditions, even for cases with very similar Sauter mean
diameter, bed height, bed mass; and with the same superficial
gas velocity.

Simulations with correction for the size dispersity effect, i.e. the
over-estimation of drag force for small particles and the under-
estimation of drag force for large particles, reveal better agreement
with the measurements, in terms of time-averaged profiles of vol-
umetric flux, density distributions of particle velocity, cumulative
distributions of particle granular temperature and mixing index.
Therefore, correction for the size dispersity effect in the drag model
is essential to improve the accuracy of CFD-DEM simulation of
poly-disperse particle systems in fluidized beds.

In further research, the color-PTV method will be used to
retrieve the particle-scale information in specific poly-disperse
particle systems, e.g. exchange rates of poly-disperse particles at
over-flow weirs in horizontal fluidized beds (Bachmann et al.,
2017) and mixing behavior of granules (poly-disperse and
non-spherical) in rotating drums. The verification by means of
CFD-DEM data can be extended to optimization of the methodol-
ogy for measuring particle–particle interactions or particle–wall
interactions in both uniform particle size and poly-disperse flu-
idized beds.
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aðeÞ ¼ �
ffiffiffi
5

p
ln e=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ln eð Þ2 þ p2

q
; e > 0

�
ffiffiffi
5

p
; e ¼ 0

8<
: (A.14)

Equivalent properties
Appendix A. CFD-DEM Equations

See Tables A.1 and A.2.
Table A.1
Governing equations used in the CFD-DEM simulation for the prediction of
particle-fluid flow.

Mass conservation for fluid phase (with subscript f)

@

@t
ð�fqf Þ þ r � ð�fqfuÞ ¼ 0 (A.1)

Momentum conservation for fluid phase (model A by Zhou et al. (2010))

@

@t
ð�fqfuÞ þ r � ð�fqfuuÞ ¼ ��frpþr � ð�f sf Þ � Fpf þ �fqf g (A.2)

Volumetric particle-fluid interaction force in the CFD cell

Fpf ¼ 1
DV

XN1

j¼1

ðf d;i þ f 00Þ (A.3)

Newton’s equations for the motion of particles

mi
dvp;i

dt
¼ f pf ;i þ

XN2

i¼1

ðf nc;ij þ f tc;ijÞ þmig (A.4)

Im;i
dxi

dt
¼
XN2

i¼1

ðT t;ij þ T r;ijÞ (A.5)

Particle-fluid interaction force on individual particle

f pf ;i ¼ f d;i þ frp;i þ fr�s;i þ f 00 (A.6)

Note that f 00 , the sum of non-dominant particle–fluid interaction forces, is not
considered in this study.

Young’s modulus Eeq

Eeq ¼ 1� r2
i

Ei
þ 1� r2

j

Ej

 !�1

(A.15)

Radius Req

Req ¼ 1
Ri

þ 1
Rj

� ��1

(A.16)

Shear modulus Geq

Geq ¼ 1� ri

Gi
þ 1� rj

Gj

� ��1

; Gi ¼ Ei

2ð1þ riÞ
(A.17)

Mass meq

meq ¼ 1
mi

þ 1
mj

� ��1

(A.18)
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