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Drying of droplets containing nanoscaled particles is investigated for the first drying stage by means of a population
balance model. The novelty of the model consists in the consideration of not only gas-side heat and mass transfer, and
liquid-side diffusion, but also aggregation as a particulate process. Size-dependency of particle mobility links liquid-side
mass transport and aggregation, leading to different particle concentration profiles in the droplet depending on the thermal
conditions and aggregation kinetics. The main focus of this work lies on the influence of the aggregation kinetics on the
profiles, the time of crust formation and the resulting droplet porosity at the end of the first drying stage. Model validation
and justification is performed by use of experimental data from literature.VVC 2012 American Institute of Chemical Engineers
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Introduction

The production of solid particles and powders by spray
drying from droplets containing microparticles and nanopar-
ticles is a process widely applied in many industries, for
instance in foods, detergents, pharmaceuticals (production of
inhalants1), and medicine (cancer detection, antibacterial
surface coatings).

The growing demands in product quality necessitate a
comprehensive understanding of the thermal and solid phase
subprocesses, that is, drying and particle formation, during
spray drying to produce results that meet high specifications.

According to the droplet morphology, the process can be
divided into two stages (Figure 1): in the first drying stage,
the droplet enters a hot medium, for instance air. It then
obtains sensible heat which leads to evaporation of the liquid
and shrinkage of the droplet. The second drying stage starts
at the point (the ‘‘locking point’’) when the droplet turns
into a wet particle, initiating the formation of a dry porous
crust at the droplet surface. In this second stage, moisture is
still evaporated from the interior of the droplet, but the
diameter of the created particle remains constant. However,
the drying conditions determine the inner structure of the
formed particle which may range from hollow or highly
porous to compact.

The heat and mass transfer during drying of liquid drop-
lets is well understood, here numerous theoretical and exper-
imental investigations have been conducted, see for instance
Ranz and Marshall2 and Walton.3 The solid phase processes
(particle formation) on their own are also understood quite

well,4,5 but the coupled process of droplet drying and parti-
cle formation is still an open problem.

The coupled process has been addressed in a number of
works so far, for instance Charlesworth and Marshall6 who
studied the evaporation from droplets containing dissolved
solids; Sano and Keey7 simulated the particle distribution
during drying using mass concentrations. In the work of
Nešić and Vodnik8 a mass balance of the shell is derived,
but the main focus lies on the thermal properties (e.g. drop-
let temperature). Seydel et al.9 considered the heat and mass
transport, and the particle formation by particle growth using
population balances for the description of the particles. Mez-
hericher et al.10 treat the thermal properties for both drying
stages in a distributed way; the solid phase, however, is
described by mass concentrations neglecting particle proper-
ties. In the works of Handscomb et al.11,12 heat and mass
transfer is considered for both drying stages; they also apply
a population balance equation (PBE) to describe the particle
formation. As in the work of Seydel et al.9 they consider
particle growth as the dominant particle formation process.

One common observation in these works is that the result-
ing droplet morphology depends on the thermal conditions
and the solid phase properties.

In this contribution, we will extend the work of Seydel
et al.9 and Handscomb et al.11 by developing a model for
the treatment of droplets containing nanoparticles during the
first stage of drying that considers the mass and heat transfer
of the liquid phase and the particle formation in the dis-
persed phase. Here, we consider aggregation of nanoparticles
as the dominant particle formation process which often
has great influence on the product properties, see for instance
Gharagozloo and Goodson.13 To model the solid phase
processes a two-dimensional (2-D) population balance5 is
applied.

Correspondence concerning this article should be addressed to A. Bück at
Andreas.Bueck@ovgu.de.
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After a verification of the model results with data obtained
from literature for special cases, we will investigate for
example the influence of the aggregation kinetics (kernels)
and the thermal conditions on the formed wet particle at the
end of the first drying stage.

Mathematical Modeling

In the following, we consider a spherical droplet with
radius R that is surrounded by a fluid phase, for example
air (Figure 2). Inside this droplet solid nanoparticles are
dispersed (spatially distributed). The interesting particle
property will be their characteristic size n, for example, the
diameter in case of spherical particles. The size and the spa-
tial position r [ [0, R] of the nanoparticles inside the droplet
are of interest because many transport processes and process
limitations depend on local spatial profiles. It is assumed
that the droplet remains spherical (and symmetric with
respect to the radial direction) and that no gradients in the
angular direction exist. In this case one spatial coordinate
(the radius) suffices to describe the spatial distribution of the
nanoparticles in the interior of the droplet.

For the description of the solid phase processes the notion
of a number density distribution n (t, r, n), which describes
the number of nanoparticles in the infinitesimal ‘‘volume’’
[r, r þ Dr] � [n, n þ Dn], is used.

The main focus of the following derivations lies on the
temporal evolution of the number density distribution. It is
affected by different processes – depicted in Figure 3: drying
of the droplet, mass transfer of solid particles, and particle
formation in the interior of the droplet. Whereas drying on

its own leads to an increase in number density at the bound-
ary of the droplet, diffusion induces a particle movement
toward the center of the droplet that has an equalizing effect
on the number density distribution. Particle formation also
changes the number density distribution, for instance in
aggregation the total number of particles decreases and
larger particles are formed shifting the density distribution to
higher particle sizes (and volumes).

Using a standard population balance approach, compare,
Ramkrishna,5 the evolution can be described by

@n

@t
¼ � 1

r2

@

@r
r2 jr
� �

� @jn
@n

þ r; r 2 ð0;R�; n 2 ½0;1Þ; (1)

where jr denotes the flux of particles in direction of the radial
coordinate, and jn denotes the flux of the particles with respect
to the property coordinate. The net rate of production r
accounts for all internal processes in the droplet that create
new particles or consume particles, for example, aggregation
and breakage. Note that in Eq. 1 the divergence operator with
respect to r is written in spherical coordinates to account for
the geometry of the droplet.

In the direction of the droplet radius r, we consider diffu-
sion as the dominating transport phenomenon. The flux along
this coordinate can therefore be written as

jr ¼ �D
@n

@r
; (2)

where D is the diffusion coefficient of the solid in the liquid.
For nanoparticles, it can be calculated by the Stokes–Einstein
relation

D ¼ kBTd

6p g n
; (3)

where kB is the Boltzmann constant, Td is the temperature of
the droplet, and g denotes the dynamic viscosity of the liquid.

In terms of the particle size n we assume no change by
fluxes, for example, growth, that is jn ¼ 0. However, we

Figure 2. Set-up for the mathematical modeling of
drying of a droplet.

Particles are dispersed in a droplet of (initial) radius R
that is surrounded by a gas phase. Because of drying,

the radius will shrink with a shrinking rate w(R) ¼ v,

that is, R ¼ R(t).

Figure 3. Main processes considered in this work
affecting the dispersed nanoparticles in the
droplet.

a) Drying of droplet leads to an increase in particle con-

centration at the boundary of the droplet; b) particle

movement by diffusion equalizes the particle concentra-

tion over the droplet volume; c) particle formation due

to aggregation (increase in particle volume and decrease

in particle number).

Figure 1. Drying stages of a droplet.

After an initial phase of heating, the first drying stage

sets in where the liquid evaporates at a constant rate.

Following the initial crust formation due to the sus-

pended particles in the droplet the second drying stage

starts with a thickness-dependent evaporation rate and

leads to different final particle morphologies.
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consider the change of size by an internal process, that is,
aggregation. The production term r can then be expressed –
under the assumption of spherical particles (using the particle
volume v �n3) – as

r ¼ 1

2

Zv

0

b�ðu; v� uÞnðt; r; uÞnðt; r; v� uÞ du

�
Z1
0

b�ðu; vÞnðt; r; uÞnðt; r; vÞ du: ð4Þ

In this formulation, b* is the aggregation kernel for which
various laws are available depending on the underlying process,
for example, constant kernel, sum kernel, or shear kernel.

The population balance is then mathematically a 2-D
partial-integro-differential equation, for which we pose the
following boundary conditions

lim
r!0þ

jrðt; r; nÞ ¼ 0; (5)

jrðt;R; nÞ ¼ 0; (6)

i.e., we assume no loss of solid particles in the droplet due to
mass transport.

Assuming a uniform temperature hd an energy balance for
the droplet yields8

cp;wlmw þ cp;sms

� � dhd
dt

¼ hðhg � hdÞ4pR2

� _Mevap �cp;wlhd þ Dhevap þ cp;wghg

� �
: ð7Þ

Here, hg denotes the temperature of the surrounding gas
phase, Dhevap is the specific evaporation enthalpy, and mw and
ms are the masses of water and solid in the droplet, respec-
tively. In the calculation of the evaporation, the liquid in the
droplet is first cooled down to hevap ¼ 0�C (�cp,wlhd), then it
is evaporated at this temperature (Dhevap) and then the vapor is
heated up to the gas temperature (cp,wghg). The benefit is that
only one constant specific heat of evaporation (which is
available from tables) is required for the calculation.

The heat transfer coefficient h is given by Renksizbulut
and Yuen14

h ¼ Nu kg

2R
;Nu ¼ ð2 þ 0:6 Re1=2Pr1=3Þð1 þ BÞ�0:7: (8)

In this equation, B ¼ cp,wg(Tg � Td)/Dhevap denotes the so
called Spalding number which accounts for the influence of
the Stefan flow in the boundary layer around the droplet.

As the droplet is drying its radius will shrink with a cer-
tain rate v, that is, the radius of the droplet is a function of
time: R ¼ R(t). Considering the first drying period only, that
is, no crust formation by solid particles, and assuming a uni-
form shrinkage, that is, the droplet remains spherical, a mass
balance for the liquid in the droplet yields

dR

dt
¼ v ¼ �

.g

.l

blgðRÞðYsat � YgÞ; Rðt0Þ ¼ R0; (9)

where R0 is the radius of the droplet just before the drying
starts, and blg is the mass transfer coefficient from the liquid to
the gas phase. It can be calculated by

blg ¼ Sh dg

2R
; (10)

with Sh the dimensionless Sherwood number, given by
Renksizbulut and Yuen14

Sh ¼ 2 þ 0:6 Re1=2Sc1=3
� �

1 þ Bð Þ�0:7; (11)

and dg the diffusion coefficient of water vapour in the gas. It
can be calculated from a relation given by Grigoriev and
Zorin15

dg ¼ 3:546 � 10�10 m2

K1:75 s
� Td þ Tg

� �1:75
; (12)

with [Tg] ¼ [Td] ¼ K and [dg] ¼ m2s�1.
The driving force for the mass transfer is given by the dif-

ference in moisture contents of the surrounding gas phase
(Ysat � Yg), which is a measure for the capability of the gas
to further absorb liquid. The saturation moisture content Ysat

is the maximum amount of liquid that can be absorbed per
kilogram of gas. This value depends on the temperature of
the gas hg and has to be calculated from

Ysat ¼ 0:622
psat

p� psat

; psat ¼ exp A� � B�

C� þ hg

� �
; (13)

with [psat] ¼ Pa, [hg] ¼ �C and the empirical Antoine constants
A* ¼ 23.4588, B* ¼ 3977.3782�C�1, and C* ¼ 233.3172�C.

This modeling approach, however, is only valid for arbi-
trary but constant balance volumes, that is, the influence of
the drying droplet – the shrinkage in (balance) volume – on
the number density distribution is not yet accounted for.

There are several ways to account for the changes in the
number density distribution induced by the drying. Hands-
comb et al.11 (amongst others) modeled the influence by an
artificial boundary source term at r ¼ R(t). Although this
yields a consistent formulation of the problem in the cases
they considered (diffusion along the radial axis of the drop-
let), it complicates the handling of processes where no trans-
port by diffusion is involved, for instance drying and aggre-
gation of particles only. In Handscomb et al.,11 the natural
boundary condition at r ¼ R(t), as posed by the diffusion, is
not present in the formulation of the process and has to be
included manually.

The present work starts with the integral formulation of
the PBE for a time-varying balance volume. An application
of Leibniz’ rule yields an additional term that accounts for
the local change in number density due to a local change of
the balance volume. The corrected PBE then reads

@n

@t
þ 1

r2

@

@r
ðr2 nwÞ ¼ � 1

r2

@

@r
r2 jr
� �

þ r; r 2 ð0;RðtÞ�; n 2 ½0;1Þ ð14Þ

Here, w ¼ w(r) is the local shrinkage rate of the balance
volume in radial direction. It has only a non-zero value at
the current boundary r ¼ R(t), that is, w(R) ¼ v, as only
here the shrinkage occurs. To guarantee mass conservation
of solid particles, the boundary conditions have to be formu-
lated as follows

lim
r!0þ

jrðt; r; nÞ ¼ 0; (15)
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�D
@n

@r

� �����
r¼RðtÞ

¼ 0: (16)

The new term in the PBE can be interpreted as a convec-
tive flux of solid particles along the radial direction caused
by the shrinking droplet volume. Note, that this formulation
is independent of the presence of a diffusive process – the
new boundary term stems from the newly introduced
convection. The formulation also paves the way for the con-
sideration of nonuniform shrinkage by allowing for a local
shrinkage rate, but this is out of the scope of the current
investigation.

The equations presented constitute a complete model to
simulate the temporal evolution of the number density distri-
bution. The present ‘‘moving boundary’’16 or ‘‘receding
interface’’ problem11 is computationally difficult due to the
different time scales of the subprocesses drying, diffusion,
and aggregation and the presence of two distributed coordi-
nates (particle size and position).

In the following section, we present simulation results for
the temporal evolution of the number density distribution for
several important cases. After a validation of the mass and
energy balance part of the model by comparison with experi-
mental data, we examine how the number density profiles
are affected by the various subprocesses, starting with the
limiting case of pure drying. Afterward, we briefly consider
the combined subprocesses drying and diffusion, before
focussing on the case of drying, diffusion, and aggregation.
Here, the influence of the aggregation kinetics on the pro-
files, the locking point, and the resulting droplet porosity at
the end of the first drying stage is investigated in detail.

Simulation Results

To simulate the model equations numerically the PBE is
discretized with respect to the external and internal coordi-
nates. Here, Nr nodes in radial direction of the droplet, and
Nn nodes in direction of the property coordinate are used. The
discretization interval of the property coordinate n and the
number of nodes is chosen such that the total volume of
particles in the droplet is predicted consistently, that is, no loss
of total volume due to creation of particles outside the discre-
tized interval occurs. For the discretization of the convection
and the diffusion term, a finite volume method is used. The
integral term used to describe the aggregation process is
discretized by an application of the Cell Average method.17

To avoid numerical difficulties due to the different orders
of magnitude in the discretized property distribution and the
droplet radius, we introduce the following scalings

r ¼ RðtÞ c; c 2 ½0; 1�; (17)

n ¼ NðtÞ v; v 2 ½0; 1�; (18)

with R the droplet radius, and N ¼ 3l00(t)/(4pR3) the total
number concentration of particles. Note that by introducing
these scalings the new quantities c and v are dimensionless.

The resulting set of ordinary differential equations for the
discretized number density distribution and the droplet radius
can then be cast into the form

_x ¼ f ðx; pÞ; xðt0Þ ¼ x0; (19)

where x 2 RNrNnþ1 ¼ ½v1;1; …; vNr ;Nn
; c�T, and p is the vector

of process parameters.

To discuss the results qualitatively we introduce the notion
of a moment of a multivariate distribution

li;jðtÞ ¼
ZRðtÞ
0

Z1
0

ri njnðt; r; nÞ dn dr: (20)

Of particular interest are the moments l2,0, l2,1, l2,2, and
l2,3 as they directly relate to the total number, total length,
total surface area, and total volume (mass) of the particles
inside the droplet. Note, that the index i is equal to 2 to
account for the spatial geometry of the droplet.

The differential equations are implemented (in radial
direction) on a moving grid. The general idea is depicted in
Figure 4 and allows for a good representation of the move-
ment of particles in the interior of the droplet with just a
few control volumes. The equations are integrated by MAT-
LAB’s ode15s solver that uses a variable-order numerical
differentiation scheme.18

Contrary to other models (e.g., Mezhericher et al.10) all
phenomena included in the model (drying, diffusion, and
aggregation, see Eq. 14) can be switched on or off. Thus, it
is possible to investigate for example only drying or drying
plus aggregation without diffusion with one and the same
model.

Model validation by selected experimental data

Before investigating the influence of different parameters
on the drying process and concentration profiles within the
droplet, the overall heat and mass balances are validated.
Therefore, the model is compared with experimental data
from literature (Nešić and Vodnik8). In the experiments of
Nešić and Vodnik, a droplet (Rd,0 ¼ 1 mm) containing nano-
scaled silica particles of 16 nm in diameter was dried in a
controlled air stream with a temperature of 178�C and a gas
velocity of 1.4m s�1. The density of solid .s was calculated
using the corresponding initial experimental conditions

.s ¼
ms;0

Vs;0
; (21)

where ms,0 is the initial mass of solid and Vs,0 the initial solid
volume. The initial solid mass can be calculated from the
initial solid mass fraction xs,0 and initial droplet mass md,0

Figure 4. Illustration of the general idea of the moving
grid implementation.

In each time step of the simulation the remaining droplet

radius is discretized equally into Nr control volumes.

The velocity of the grid is equal to the drying velocity of

the droplet.
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ms;0 ¼ xs;0md;0: (22)

The initial solid volume is computed from the initial drop-
let volume Vd,0 and the initial liquid volume Vl,0 inside the
droplet using the following equation

Vs;0 ¼ Vd;0 � Vl;0; Vd;0 ¼ 4

3
pR3

d;0; (23)

Vl;0 ¼ ml;0=.l ¼ ð1 � xs;0Þmd;0=.l: (24)

Here, Rd,0 is the initial droplet radius and .l the density of
water. Applying these equations to the experimental data of
Nešić and Vodnik yields a solid density of .s ¼ 939 kg m�3.
This is an untypical value for the density of silica, but is used
nevertheless in the following calculations for best comparison
of overall mass and temperature history with the experimental
data. The data used for the simulation and comparison is
summarized in Table 1.

According to Nešić and Vodnik the following diffusion
coefficient was used:

D ¼
10�7 m2 s�1; xl > 0:6;

1 m2 s�1 � exp � 28:1þ282xl

1þ15:47xl

� �
; xl � 0:6

(
: (25)

Here, xl is the mass fraction of liquid inside the droplet.
In this correlation, a value for the diffusion coefficient equal
to 10�7 m2s�1 was assumed to model a vigorous internal
circulation within the droplet caused by air drag force before
the gel structure is formed, as it was experimentally
observed by Nešić and Vodnik. Note, that for validation,
aggregation is not considered and the diffusion coefficient is
not particle size dependent.

The moment when the local porosity esh ¼ 1 � Vagg/Vsh

in the outer shell (Figure 5), where Vagg is the total volume
of the aggregates and Vsh is the total volume of the shell,
decreases to a value of esh � 0.4 local crust formation is

initiated. This moment is the so called locking point. Then,
the droplet no longer dries with the first drying period rate
but with the second drying period rate, which is limited by
the characteristics of the formed layer.

In Figure 6, the predicted evolution of silica droplet mass
and temperature and the corresponding experimental values
of Nešić and Vodnik in the first drying stage are shown.
As one can see, there is a good agreement between the simu-
lated curves and experimental points for both droplet temper-
ature and droplet mass.

After validation of the overall heat and mass balance, we
can consider how the concentration profiles inside the drop-
let may look like (Figure 7): At the beginning there is a uni-
form concentration profile inside the droplet. With increasing
time the radius of the droplet decreases due to drying, lead-
ing to an increase of the total number concentration in the
outer volume. Because of the resulting concentration gradi-
ent, the particles are transported by diffusion in direction of
the radial coordinate from the droplet boundary to the drop-
let center leading to an increase in total number concentra-
tion in the inner volumes. After gel formation, the diffusion
coefficient decreases (Eq. 25), that is, the particles do have a
lower mobility, leading to a higher increase of the concentra-
tion profile at the droplet boundary due to drying.

Table 1. Experimental Data from Nešić and Vodnik8

Initial droplet radius (mm) Rd,0 1
Size of primary particles SiO2

(spherical; nm)
nPP 16

Density of solid (kg m�3) .s 939
Initial solid mass content (kgs kg�1

d ) xs,0 0.3
Initial droplet mass (g) md,0 4.3 � 10�3

Gas temperature (�C) yg 178
Gas velocity (m s�1) ug 1.4
Initial droplet temperature (�C) yd,0 19
Relative humidity of gas bulk / 0.004
Density of liquid (kg m�3) .l 1000
Density of gas (kg m�3) .g 1

Figure 5. Schematic of shell porosity.

Figure 6. Temporal evolution of droplet mass (right-hand
axis) and droplet temperature (left-hand axis)
in the first drying stage and comparison with
experimental data from Nešić and Vodnik.8

yg5 178�C, ug5 1.4m s21,Rd,05 1mm.

Figure 7. Normalized number concentration profiles
inside silica droplet.

Curves are plotted every 2 s. The dashed line determines

the concentration profile at the locking point (tlock ¼ 16.2 s).
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Influence of aggregation on the drying process

The graphs in Figure 7 give a first idea how the concen-
tration profile in a suspension droplet drying under certain
conditions may look like. Different particle phenomena can
have an influence on the drying process and the resulting
concentration profiles within the droplet. Our special interest
concerns the influence of aggregation on the drying process
as this has not yet been studied.

To investigate the influence of aggregation on the drying
process, the Stokes–Einstein equation is used to calculate the
diffusion coefficient (Eq. 3). In Figure 8, computational
results for the locking point, meaning the time when the
solid volume fraction at droplet surface reaches a value of
0.6 or esh ¼ 0.4, for two different gas temperatures and
different aggregation kernels are shown: first, we consider a
constant aggregation kernel b*(u, v) ¼ b0 due to its simplic-
ity. However, as this kernel does not necessarily reflect the
true aggregation behavior of nanoparticles, we also consider
the Brownian kernel b*(u, v) ¼ b0,B(2 þ u/v þ v/u). This
has been used in various publications, for instance Gharago-
zloo and Goodson13 and Tourbin and Frances.19

Using an approximation of the continuum Brownian ker-
nel for the collision of equal-sized particles, the aggregation
efficiency b0,B can be related directly to the temperature of
the particle and the dynamic viscosity of liquid in the droplet
via Boltzmann’s constant kB

b0;B ¼ 8kB

3g
ðhd þ 273:15Þ: (26)

In comparision to the constant kernel, it can be said that
for values b0 \ b0,B the collisions are inhibited for instance
by long-range repulsive forces or are not totally efficient due
to the contact dynamics. For values b0 [ b0,B the long-range
forces are attractive, assisting the formation of aggregates.

In the following, we assume values for the aggregation
kernels that allow for a sufficiently fast aggregation of par-
ticles in comparison to the drying of the droplet. If aggrega-
tion is very slow compared to drying then the process is
dominated by drying and the results will be similar to the
case of drying only.

Using the same value for the aggregation efficiency in
both kernels (b0 ¼ b0,B), which for the Brownian kernel is

several orders of magnitude larger then the threshold value
calculated by Eq. 26 signaling a highly unstable nanosuspen-
sion, one obtains the results shown in Figure 8. For both
kernels an influence of the aggregation efficiency on the
locking points can be observed, that is, they follow the same
trend. However, quantitatively the results cannot be com-
pared directly in this graph. Here the contribution of the
size-dependent part of the kernel has to be included, to find
the corresponding aggregation efficiencies

b0 ¼ b0;Bð2 þ u=vþ v=uÞ: (27)

Here, one sees that for instance for particles with u � v:
b0 ¼ 4b0,B, that is, for a quantitative comparison of the
results the curve for the constant kernel has to be shifted to
the left to be comparable with the Brownian kernel. If one
performs this operation (not depicted), one observes that
both graphs almost coincide, that is, the contribution of the
size-dependent term is almost negligible. For that reason, we
restrict ourselves in the following discussion to the constant
aggregation kernel. This simplification yields a correct repre-
sentation of the trend for the Brownian kernel, however, for
a quantitative comparison the information has to be scaled
by the size-dependent part.

There is a significant influence of the drying rate, repre-
sented by the different gas temperatures, on the time of crust
formation. Higher drying rates lead to a faster contraction of
the droplet and a faster increase of solid concentration at the
droplet surface so that the maximum value of solid volume
fraction of 0.6 is achieved faster.

For fast drying, there is no significant influence of aggre-
gation on the locking point. This can be explained as fol-
lows: the faster the drying the earlier the locking point is
achieved, that is, the faster the immobile crust is formed.
Thus, for fast drying, the particles have hardly time to
diffuse from the droplet surface to the droplet center. Conse-
quently, the size of the diffusion coefficient has hardly an
influence on the time of crust formation, and thus, there is
no influence by the change in diffusion coefficient due to the
particle growth caused by aggregation.

Contrary to that, in the case of slow drying, particles have

more time to diffuse from the droplet surface to the droplet

center whereby smaller particles are transported faster than

bigger ones (Eq. 3). Thus, a higher aggregation kernel and

the resulting bigger aggregates are leading to slower diffu-

sion of the particles and therefore to a decrease in locking

point as the maximum value of solid volume fraction of 0.6

is achieved faster.
As shown in Figure 8, the influence of aggregation on the

time of crust formation can be very interesting. We will now
consider, step by step, how the concentration profiles change
under the influence of diffusion and aggregation. We start
with drying only, then diffusion is considered additionally.
The final case will be the combined process of drying,
diffusion, and aggregation. In all cases, the process parame-
ters listed in Table 2 are used.

Case 1: Drying of Droplet. As already mentioned, with
the present formulation of the model (Eq. 14), it is possible
to determine the influence of the single effects of drying, dif-
fusion, and aggregation individually with one and the same
model by just activating the subprocesses. Thus, it is possi-
ble to consider the case of pure drying. In previous works
(e.g., Refs. 9–11), the problem of the moving boundary (i.e.

Figure 8. Influence of aggregation kernel and gas tem-
perature (yg 5 178�C and yg 5 25�C) on the
locking point.

For diffusion the Stokes–Einstein equation is used. If the

drying is very fast, aggregation has no significant influ-

ence on the locking point.

AIChE Journal November 2012 Vol. 58, No. 11 Published on behalf of the AIChE DOI 10.1002/aic 3323



the drying) is solved by modifying the boundary condition
for the diffusion term. But in those formulations, without
diffusion (D ¼ 0), there is no boundary condition and there-
fore, it is a problem to handle the case of pure drying.

In the case of pure drying, the particles are moved just by
contraction of the droplet, there are no other transport proc-
esses (e.g., diffusion). At each time step the remaining drop-
let volume is rediscretized into Nr control volumes. The size
of each of these control volumes is decreased by this action
as the radius of the droplet is shrinking. The volume of solid
in each of these volume elements is also changed by the
rediscretization. A certain fraction is now accounted to the
neighboring volume due to the ‘‘shifting’’ of the coordinate
system. In total, the number of particles in each inner
volume decreases so that the number concentration in each
of these volume elements remains at its initial value. The
‘‘shifted’’ particles end up in the (moving) outer shell where
they accumulate due to the boundary conditions stated, lead-
ing to an increase of number concentration in the outer shell.

In Figure 9, the temporal evolution of the concentration
profiles inside the droplet is shown. At the beginning of the
process there is a uniform concentration profile inside the
droplet. Then, the number concentration in the outer shell
increases due to drying and the corresponding decrease in
volume. The curves are getting shorter due to the shrinkage
of the droplet. The number concentration in the inner vol-
ume elements remains constant.

An inspection of the numerical results for the size distri-
bution shows that the first four total moments [l2i, (i ¼
0,…,3)] of the distribution are constant: as there is no trans-
port of solid particles out of the droplet, that is, the total
mass of solid inside the droplet is conserved, the third
moment remains at its initial value. The total moment l20,
representing the total number of particles, remains constant
as well as there is no particle formation process (no aggrega-
tion). Similarly, the first and the second moment, which cor-
respond to the total length and total surface area of the par-
ticles, are constant.

Case 2: Drying and Diffusion. Similar to Case 1, there
are no particle formation processes, only the diffusive trans-
port of particles in direction of the radial coordinate. As this
transport effect does not have any influence on the total
moments they are conserved during the process.

Because of the concentration gradient, caused by the
increase of number concentration in the outer shell due to
shrinkage of the droplet (Case 1), the particles are trans-
ported by diffusion from the droplet boundary to the droplet
center. The diffusion process leads to an equalization of the
particle number concentration along the radial coordinate,
and thus, the time of the locking point increases because it
takes longer to build up the critical solid content in the outer
shell.

Two limiting cases can be acquired: first, if the diffusion
process is very slow compared to the drying, the particles do
not have enough time to equalize the concentration gradient
caused by drying. In this case, one would obtain concentra-
tion profiles similar to those of Case 1 (pure drying). Con-
versely, if the diffusion process is very fast compared to the
drying, this leads to a complete equalization of the number
concentration along the radial coordinate. In this case, one
would obtain horizontal concentration profiles and a further
increase in the locking point.

The temporal evolution of the concentration profile for a
case in between these two limits, where the diffusive trans-
port is slow compared to drying, is shown in Figure 10.
Here, one observes an equalizing effect of the diffusion on
the profile (Figure 9), but the diffusion is not fast enough to
counteract the increase caused by the shrinkage of the

Figure 9. Evolution of concentration profiles for the
case of pure drying.

Curves are plotted every 2 s. The dashed line determines

the concentration profile at the locking point (tlock ¼
43.6 s). Particles move just by contraction of the droplet,

particle number concentration in (moving) outer shell

increases.

Table 2. Simulation Parameters

Initial droplet radius (mm) Rd,0 1
Size of primary particles SiO2 (spherical; nm) nPP 1
Density of solid (kg m�3) .s 939
Initial solid mass content (kgs kg�1

d ) xs,0 0.1
Gas temperature (�C) yg 25
Gas velocity (m s�1) ug 1.4
Initial droplet temperature (�C) yd,0 19
Relative humidity of gas bulk / 0.004
Density of liquid (kg m�3) .l 1000
Density of gas (kg m�3) .g 1
Number of discrete radial volume elements Nr 100
Number of discrete size classes Nn 14

Figure 10. Evolution of concentration profiles for the
case of drying and slow diffusion (see text).

Curves are plotted every 10 s. The dashed line deter-

mines the concentration profile at the locking point

(tlock ¼ 141.7 s). Diffusion leads to an equalization of

concentration along the radial coordinate.
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droplet. In comparison with the case of drying only, an
increase in the locking time tlock can be observed.

Case 3: Drying, Diffusion, and Aggregation. In this case,
larger particles are formed from smaller ones by aggregation
leading to a decrease in total particle number and particle
number concentration, respectively. The aggregates are trans-
ported by diffusion due to the concentration gradient caused
by the drying of the droplet (Case 2). As the mobility of the
nanoparticles depends on their size (Eq. 3) aggregation and
diffusion are linked, that is, smaller aggregates are transported
faster than bigger ones. For the simulations, a constant aggre-
gation kernel is used, that is, b* ¼ b0. Simulations done with
other aggregation kernels (e.g., brownian) show similar
results.

The simulation results for three different aggregation ker-
nel values are shown in Figures 11–13: the temporal evolu-
tion of the concentration profile for b* ¼ b0 ¼ 0.001 is
depicted in Figure 11. Despite aggregation, the particle num-
ber concentration in the outer volume elements is increasing
with increasing time, leading to the result that, for this
aggregation kernel, drying is the dominating process, that is,
the aggregation is slow compared to the drying. If the aggre-
gation kernel is increased (b* ¼ b0 ¼ 0.01) the number con-
centration in the inner volumes decreases with increasing
time (as shown in Figure 12) and, as can be observed in Fig-
ure 13, for b* ¼ b0 ¼ 0.1, the particle number concentration
decreases even at the boundary of the droplet, even though
drying promotes an increase of particle number concentra-
tion in the outer shell, that is, the aggregation is fast com-
pared to drying and diffusion.

As the mobility of the particles depends on their size, for
example, smaller particles are transported faster than bigger
ones, the locking point decreases with increasing aggregation
kernel (see also Table 3) due to the limited mobility of the
particles.

As mentioned earlier, the aggregation process leads to a
decrease of total particle number, represented by the zeroth
moment l20. Accordingly, the total length (proportional to
l21), and total surface area (proportional to l22) are also
decreasing. As the total mass of particles inside the droplet
is conserved, that is, no particles leave the droplet, the total

third order moment l23 of the distribution remains con-
stant.

In Figure 14, the temporal evolution of the total zeroth
moment until the locking point for the three constant aggre-
gation kernels is shown. As one can see, higher aggregation
rates are leading to a faster decrease in total particle number.
In Figure 15, the radial distribution of the mean diameter
inside the droplet at the time of the locking point is shown.
Here, one can see that higher aggregation kernels are leading
to bigger aggregates. In the outer volume elements, the size
of the aggregates is increasing. This is due to the increase of
particle number concentration in the outer volume elements
caused by drying.

Finally, in Figure 16, the porosity profiles at the time of
the locking point are shown. The porosity in the outer

Figure 12. Evolution of concentration profiles for the
case of drying, diffusion, and aggregation
with constant aggregation kernel, b0 5 0.01.

Curves are plotted every 10 s. The dashed line deter-

mines the concentration profile at the locking point

(tlock ¼ 117.8 s). A higher aggregation kernel leads to a

decrease of number concentration in the inner volume

elements (cf., Fig. 11).

Figure 11. Evolution of concentration profiles for the
case of drying, diffusion, and aggregation
with constant aggregation kernel, b0 5 0.001.

Curves are plotted every 10 s. The dashed line deter-

mines the concentration profile at the locking point

(tlock ¼ 136.9 s).

Figure 13. Evolution of concentration profiles for the
case of drying, diffusion, and aggregation
with constant aggregation kernel, b0 5 0.1.

Curves are plotted every 10 s. The dashed line deter-

mines the concentration profile at the locking point

(tlock ¼ 89.5 s). Decrease of number concentration even

in the outer shell.
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volume elements decreases due to the increase of particle
number concentration caused by drying. The decrease of po-
rosity in the outer volume elements gets steeper with
increasing aggregation kernel. As bigger particles are trans-
ported slower than smaller ones, there is a minor compensa-
tion of particle concentration and thus in porosity, too.

In Figure 8 it was shown, that aggregation can have an
influence on the drying process. The numerical results for
the locking point, for the three case studies are summarized
in Table 3.

For pure drying, the locking point is the lowest as there
is no equalization of concentration by diffusion. Thus, the
solid volume fraction at droplet surface reaches a value of
0.6 very fast. The diffusion process in the case of drying
and diffusion leads to an equalization of number concen-
tration along the radial coordinate and thus, to a decrease
of particle concentration in the outer volume. Conse-
quently, it lasts longer to reach a solid volume fraction of
0.6 at the droplet surface, and thus, one gets a higher
locking point.

If aggregation is considered additionally, the locking
point decreases again. Because of particle growth by aggre-
gation and the resulting decrease in the diffusion coefficient
(Eq. 3), the mobility of the particles is decreased. The
higher the aggregation rates the faster the particles are
growing and consequently the more the mobility of par-
ticles is decreased leading to faster achievement of the
locking point.

There are two limiting cases: if the aggregation process is
very slow, the mobility of particles is hardly restricted. For

this case, the time of the locking point is similar to the one
of drying and diffusion. If the aggregation is very fast, the
mobility of particles is intensively restricted. Then, the time
of the locking point converges to the one of pure drying.

Conclusions and Outlook

In this work, we presented a mathematical model to
describe the simultaneous processes of drying, diffusion, and
aggregation of nanoparticles suspended in liquid droplets.
The considered properties of the particles are the current
position inside the droplet and their characteristic size. As
the radius of the droplet shrinks with the drying, the time
evolution of the particle size distribution is stated as a mov-
ing boundary problem. In contrast to previous contributions,
for example Handscomb et al.,11 the effect of shrinking on
the PBE was not modeled as an artificial boundary source
but as a flux term in the PBE which is more suitable for
important limiting cases, for example, pure drying of the
droplet.

The model was validated for the case of drying and diffu-
sion using experimental data from Nešić and Vodnik.8 The

Figure 14. Evolution of the total moment l20 for the
case of drying, diffusion, and aggregation.

A constant aggregation kernel is used. Curves end up

at the locking point. Higher aggregation kernels are

leading to a decrease of the locking point and to a

faster decrease in particle number.

Figure 15. Profile of the mean diameter of the particles
inside the droplet at the time of crust forma-
tion for the case of drying, diffusion, and
aggregation.

A constant aggregation kernel is used. The size of the

aggregates is increasing mainly near the outer shell.

Figure 16. Porosity profiles at the time of crust forma-
tion for the case of drying, diffusion, and
aggregation.

A constant aggregation kernel is used. Higher aggrega-

tion kernels are leading to a steeper decrease of poros-

ity toward the outer shell.

Table 3. Influence of the Different Subprocesses on the
Locking Point

Case
Locking
Point (s)

Drying only 43.6
Drying and diffusion 141.7
Drying, diffusion, and aggregation (b0 ¼ 0.001) 136.9
Drying, diffusion, and aggregation (b0 ¼ 0.01) 117.8
Drying, diffusion, and aggregation (b0 ¼ 0.1) 89.5
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results show a good agreement between the experimental
and simulated data.

Additionally, simulations were conducted for certain limit-
ing cases: drying only, and drying and diffusion. The conserva-
tion of the zeroth and third total moment of the size distribution
serve as a verification of the model.

In the final case the processes drying, diffusion, and
aggregation are combined. For this case the evolution of
characteristic values, for example, the total moments of the
distribution or the particle number concentration, was shown.
The combined case was simulated for different aggregation
kernels to illustrate the influence of aggregation on the dry-
ing process and the locking point. The faster the aggregation
is compared to drying and diffusion, the earlier the locking
point is achieved. It was also shown that the resulting drop-
let porosity is influenced by the speed of aggregation.

Up until now, all results are limited to the first drying
stage, meaning the time before an immobile crust at the
droplet surface is formed. Next will be the extension of the
model to the second drying stage and considering the proc-
esses after crust formation. Also, drying experiments by
means of ultrasonic levitation will be realized.
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Notation

Symbols

A* ¼ Antoine constant
B* ¼ Antoine constant (�C�1)
C* ¼ Antoine constant (�C)
cp ¼ specific heat capacity (J kg�1K�1)

Dhevap ¼ specific evaporation enthalpy (J kg�1)
d ¼ diameter (m)
D ¼ diffusion coefficient of particles in liquid (m2 s�1)
h ¼ heat transfer coefficient (W m�2 K�1)

jr, jn ¼ flux density (m�3 s�1)
kB ¼ boltzmann constant (J K�1)
k ¼ heat conductivity (W m�1 K�1)
m ¼ mass (kg)
n ¼ number distribution density (m�3 m�1)

Nc ¼ number concentration in radial volume (m�3)
p ¼ pressure (N m�2)
r ¼ external coordinate (radius) (m)
R ¼ droplet radius (m)
t ¼ time (s)
T ¼ temperature (K)
u ¼ velocity (m s�1)

u,v ¼ volume of particles (m3)
V ¼ volume (m3)
w ¼ local shrinkage rate (m s�1)
Y ¼ moisture content (kgw kg�1

g )

Dimensionless Numbers

B ¼ Spalding number
Nu ¼ Nusselt number
Pr ¼ Prandl number
Re ¼ Reynolds number
Sh ¼ Sherwood number

Greek letters

b ¼ mass transfer coefficient (m s�1)
b0 ¼ aggregation efficiency (s�1)

b* ¼ aggregation kernel (Various)
c ¼ dimensionless radius
dg ¼ diffusion coefficient of water vapour in gas (m2 s�1)
e ¼ porosity
g ¼ dynamic viscosity of droplet (kg m�1 s�1)
y ¼ temperature (�C)

l2j ¼ j-th total moment (j ¼ 0,1,2,3) (mj)
n ¼ internal coordinate (m)
. ¼ mass density (kg m�3)
r ¼ net rate of production (m�2 s�1)
/ ¼ relative humidity
v ¼ dimensionless number density
x ¼ mass fraction (kg kg�1

d )

Subscripts

0 ¼ initial value (t ¼ 0)
agg ¼ agglomerate

B ¼ brownian
d ¼ droplet

evap ¼ evaporation
i,j ¼ order of moments
g ¼ gas
l ¼ liquid

lg ¼ from liquid to gas phase
lock ¼ locking point

mean ¼ mean value
n ¼ normalized

PP ¼ primary particle
s ¼ solid

sh ¼ shell
sat ¼ saturation
w ¼ water

wg ¼ gaseous water
wl ¼ liquid water
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