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A discrete modeling approach is introduced to investigate the influence of liquid
phase distributions on damage and deformation of particle aggregates during convec-
tive drying. The approach is illustrated on a simple 3D aggregate structure, in which
monosized spherical particles are arranged in a cubic packing and bonded together at
their contacts; the mechanical behavior of this aggregate is simulated by discrete ele-
ment method (DEM). Liquid phase distributions in the void space are obtained from
drying simulations for a pore network. In a one-way coupling approach, capillary
forces are computed over time from the filling state of pores and applied as loads on
each particle in DEM. A nonlinear bond model is used to compute interparticular
forces. Simulations are conducted for various drying conditions and for aggregates
with different mechanical properties. Microcracks induced by bond breakage are
observed in stiff material, whereas soft material tends to shrink reversibly without
damage. VVC 2010 American Institute of Chemical Engineers AIChE J, 57: 872–885, 2011

Keywords: pore network modeling, discrete element method, multiphase, microcracks,
shrinkage

Introduction

Drying is undeniably a complex process involving various
transport processes, such as two-phase flow with liquid-vapor
phase change, which are accompanied by undesired mechan-
ical effects. These effects—widely encountered, but poorly
understood—are a major problem in drying industry and
present a challenge for modeling and simulation of drying.
Therefore, a profound study is essential to learn about the
fundamental reasons of these effects and to find ways to con-
trol them, to analyze them, and to develop, as the result of
such analysis, methods and conditions of drying, which
would lead not only to a preservation of the quality of the
dried material but also to its improvement. It is known that

convective-drying induced mechanical effects mainly depend
upon moisture distribution, which is influenced by drying
conditions and the porous material itself. As major aspects, a
theoretical investigation should consider structural and me-
chanical properties of the solid as well as the mechanisms
controlling liquid flow (mainly capillary and viscous effects)
that depend on process parameters.

Several approaches in this sense have been taken in litera-
ture. Lewis et al.1 coupled classical heat and mass transfer
equations with an elastic constitutive model to find drying-
induced stresses in capillary porous bodies. A thermome-
chanical approach to shrinkage and cracking phenomena in
drying, which is based on thermodynamics of irreversible
processes and continuum mechanics of porous media, was
proposed by Kowalski.2 X-ray microtomography was used to
monitor shrinkage and cracks of drying organic gels under
different drying conditions.3 Recently, simulated drying
stresses were compared with measured tensile strength to
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give a criterion for crack initiation.4 In this work, the first
crack appears at the point where the strength curve crosses
the simulated tensile stress curve. Different strategies are
used in literature5 to model shrinkage during drying. In these
works, the partially saturated porous medium is treated as a
fictitious continuum and coupling between the transfer proc-
esses and mechanical interactions are considered as follows.
First, fundamental balance equations together with phenome-
nological rate equations for heat and mass transfer—involv-
ing effective parameters, which themselves depend on one or
more physically independent variables—are solved by use of
traditional numerical techniques to obtain time-dependent
temperature and moisture content distributions. Then,
depending on the drying period and material itself, rheologi-
cal behaviors, such as elasticity, viscoelasticity, and plastic-
ity, are applied to model mechanical effects that appear in
drying. Despite the strengths and extensive applications of
these models, they are phenomenological and primarily con-
cerned with mathematical modeling of the observed phenom-
ena without detailed attention to pore-scale physics, such as
transport phenomena and direct interactions between solid
and liquid phase.

As a more fundamental approach to drying, pore network
models (PNMs) have more recently been adopted by scien-
tists. In these models, the porous medium is represented by a
network of interconnected pores, which have a prescribed
geometry but are random in their size; and pore-scale trans-
port phenomena for each phase are described explicitly. This
ensures that effects are not lost or masked during up-scaling
to the product scale. So far, investigations with PNMs have
predominately considered the influence of physical effects
and structural properties on drying kinetics. Concerning
physical effects, viscosity is either completely neglected6 or
accounted for in liquid phase7 or in both liquid and gas
phase.8 A stabilization of the drying front has been observed
by considering gravity and liquid viscosity.9,10 Further model
extensions include film effects11,12 and heat transfer.13–15

Apart from physical effects, some studies focus on the influ-
ence of structural properties, such as pore shape12,16 and pore
size distribution (mono- and bimodal), spatial correlation of
pore size, and coordination number of the regular network.17

Few notable works have been published on the under-
standing of mechanical effects arising during drying from
pore level effects. Brinker and Scherer18 have done compre-
hensive investigations on the driving forces causing shrink-
age and cracks during drying of gels. Surface deformation of
solids has also been analyzed as due to capillary forces.19

Recently, numerical drying curves have been studied to see
the influence of shrinkage for a network of pores whose radii
are reduced with increasing capillary pressure.20 In the
above-mentioned work, driving force for cracking and
shrinkage is understood, but never modeled at the microle-
vel. This work sets out to explore these effects by means of
discrete networks of pores and particles, respectively.

In spite of significant advances in pore network drying
models, there are still open issues. For instance, these net-
work models do not include solid phase geometry explicitly.
Therefore, local effects on solid phase (such as cracks) can
not be described. In principle, these effects are due to capil-
lary forces, which induce stresses on the solid phase causing
displacement. This work sets out to explicitly model the

solid phase in the case that the porous material can be rea-
sonably represented by a network of spherical particles, such
as particle aggregates obtained by sintering, sol-gel process-
ing, or agglomeration. Capillary forces obtained from a
PNM are applied to these particles, and their mechanical
response is computed by discrete element method (DEM).

DEM is an alternative to the classical continuum mechan-
ics approach, which has originally been developed for rock
mechanics. Unlike traditional numerical methods, this mesh-
free technique can treat the solid phase as an assembly of
discrete elements, starting with basic constitutive laws at
interparticle contacts and providing microscopic interactions
of the particles and their contacts under different loading
conditions. Indeed, such microscopic information not only
can be significant for a better understanding of the phenom-
enon but also opens up possibilities for microstructural mate-
rial design. However, computational requirements in DEM
simulations are inevitably demanding, as the number of
equations governing the system depends on the number of
particles used to capture the microstructure, so that simula-
tions are usually carried out on a limited number of spherical
particles (instead of more complex particle geometries).

Initially, DEM has been widely used to model disaggre-
gated media21 that occur naturally, such as sand, rocks, and
rock-falls. Recent work includes fundamental studies on
breakage processes and strength of individual dry agglomer-
ates22,23 proving that DEM can be successfully applied to
particle systems with solid bonds to describe their experi-
mental cracking and breakage behavior. Furthermore, wet
granular materials have been modeled,24,25 in which capillary
force has been expressed as a function of interparticle dis-
tance, water bridge volume, contact angle, and surface ten-
sion. To date little report of DEM application on drying has
been found in literature.26

In this article, we propose a discrete approach to model
and simulate the mechanical effects as a result of liquid
phase evolution during convective drying of porous materials.
The scope of this work is to explain the new simulation tool,
demonstrate that it can describe relevant phenomena during
drying at a qualitative level, and—on a simple example—
illustrate what chances the numerical results offer regarding a
microscale analysis of drying. Only future work will allow the
model to become predictive, both by model development and
parameterization in well-defined experiments.

The several assumptions that are made in this pioneering
work have to be seen in this light that they are not inherent to
the modeling approach, but can be disposed of by model
extensions. Specifically, the considered particle aggregates are
of cubic arrangement, for which the pore network is also cubic
and local capillary forces are easily computed. Pore size, how-
ever, needs to be randomized to obtain the typical capillary
effects. The generalization to irregular aggregate structures is
possible; then, the pore network can be obtained, for example,
by the use of a Voronoi method,27 allowing for a natural com-
putation of pore sizes and yielding a complementary pore net-
work in a strict sense. Furthermore, heat transfer is not mod-
eled, and macroscopic stresses because of liquid pressure gra-
dients are not yet accounted for; both effects can be included
as has been done for pure pore network modeling.

Supporting the isothermal model assumption, it shall be
stressed that mechanical effects induced by moisture removal
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are typically one or two orders of magnitude larger than effects
solely caused by thermal expansion of the drying material.2

Furthermore, temperature gradients in the liquid-filled pore
regions are usually small for convective drying so that thermal
effects on the phase distributions can be neglected.13–15

First, the pore network drying model of Prat, which has
recently been extended concerning geometrical and physical
aspects,28 is recalled and governing structural and mass
transport rules are paraphrased. Then, the DEM is briefly
introduced and its assumptions and limitations are discussed.
Further, the porous structure is encoded into discrete phases
using pore network and DEM approaches. On this basis, a
one-way coupling of pore and particle networks is intro-
duced by describing capillary forces as a function of pore
saturations. The model is consecutively applied to particle
aggregates under different drying conditions. Two limiting
cases are considered that can be interpreted as (1) slow and
fast drying or as (2) two pore liquids with very different
ratios of surface tension to viscosity. Simulation of the two
cases leads to different capillary force distributions in the
particle network. The respective mechanical response is cap-
tured by tracking contact forces and, for stiff aggregates,
simulating and analyzing the resulting cracks. The influence
of material properties on cracks formation is illustrated. For
specific material properties, reversible shrinkage without
cracks is obtained as observed experimentally as spring-back
during drying of certain gels. We end with a summary of the
main findings and mention potential works for the future.

Description of Pore Network Drying Model

The PNM is a modern discrete approach for the study of
transport phenomena in porous media in general and of dry-
ing in particular. In this approach, the complicated pore
space geometry is conceptualized by a network of nodes
(standard is 2D square and 3D cubic), which are intercon-
nected by cylindrical pores. Transport phenomena are
described by using some local rules straightly at the pore
level. The PNM used in our study was initiated in pioneering
works by Prat, who elucidated the drying phenomenon as an
invasion percolation driven by evaporation. In this work, we
recall the isothermal PNM, which is based on the following
elements and rules.

Data structure

The data structure describes the connectivity of the (cylin-
drical) pores and nodes in the network and its boundary
layer. The conceptual model of a pore network is depicted in
Figure 1. The network consists of pores of uniform length L,
the radii rij of which are randomly assigned according to a
probability density function; the saturation states of pores
and nodes evolve during drying.

Mass transfer mechanisms

Mass transfer in the network is controlled by vapor diffu-
sion in the gas-filled region and liquid flow in the liquid-
filled part of the network by taking into account the follow-
ing assumptions. Liquid films and adsorption are not mod-
eled; porous media are considered as capillary with only free

water and perfect wetting. Gravity deliberately is set to zero
but could be included if larger pores and large objects shall
be studied; and viscosity in gas phase is not modeled (rea-
sonable for moderate drying conditions) so that gas pressure
is constant. Both Kelvin and Knudsen effects are neglected.
Initially, the network is completely saturated with water. Its
top surface is open for evaporation, however, the bottom is
closed and the other surfaces are impervious (see Figure 1).
To compute the vapor diffusion, quasisteady balances for
mass flow rates (in kg/s) are set up for any gas pore i by

X
j

_Mv;ij ¼
X
j

Aij
d
L

pg ~Mv

~RT
� ln pg � pv;i

pg � pv;j

� �
¼ 0 (1)

(regardless of its position in the network or in the boundary
layer) where L is distance between nodes, Aij exchange area
(prij

2 for network, L2 for boundary layer), d vapor diffusivity,
~Mv molar vapor mass, ~R universal gas constant, pg gas
pressure, T temperature (in K) and pv,i vapor pressure (in Pa).
The system of Eq. 1 is solved for unknown vapor pressures by
applying the vapor pressure of drying air at the top edge of the
boundary layer and saturation vapor pressure next to the gas-
filled interface. In the liquid domain, if viscosity can be
neglected, the following algorithm is implemented. (1) Every
liquid cluster is identified. (2) According to the invasion
percolation rule, the pore connected to the gas-invaded region,
which has lowest capillary pressure is identified for each
cluster. (3) The evaporation flux at the boundary of each

Figure 1. Partially saturated pore network including dif-
fusive boundary layer.

Liquid pores and nodes are in black; gas ones in white;
gray nodes are at saturation vapor pressure. Vapor diffusion
is shown as gray arrows; its boundary conditions are illus-
trated. For partially filled pores, liquid flow is shown as
white arrows.
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cluster is computed. (4) For each cluster, the mass loss
corresponding to this evaporation flux is assigned to the
invasion pore. (5) The pore of all clusters that empties first sets
the time step as liquid connectivity as well as the set of Eq. 1
for vapor diffusion may change. (6) The phase distribution
within the network is updated and the above-described
procedure is repeated.

To compute liquid flow rates (in kg/s) if viscosity cannot
be neglected, the mass balance in any liquid node is
expressed by

X
j

_Mw;ij ¼
X
j

pr4ij
8mwLij

pw;i � pw;j
� � ¼ 0 (2)

where mw is kinematic viscosity of water (in m2/s) and Lij
liquid-filled length of pore. The linear system of Eq. 2 must be
solved for unknown liquid pressures pw,i. Boundary conditions
to Eq. 2 are given at the liquid-gas interface. For a stationary
meniscus, that is, where capillary pressure can provide liquid
water at the local evaporation rate, the second type boundary
condition _Mw;ij ¼ _Mv;ij is applied. For a moving meniscus, that
is, where evaporation takes place at a higher rate than capillary
flow (or for any partially filled pore), the boundary condition of
first kind pw,j ¼ pg � 2r/rij (with surface tension r) is used. As
boundary conditions on the flow problem depend on meniscus
states themselves, an iterative procedure is used to find the states
of the menisci.10 For correct boundary conditions, the motion of
menisci is obtained as the difference between evaporation flow
rate and liquid flow rate. In the viscous case, several menisci per
cluster may move. Depending on meniscus motion, pores may
empty and partially saturated pores may refill again. Time
stepping is imposed by the complete emptying (or refilling) of a
meniscus pore; then, vapor and liquid flow problems must be
solved for new boundary conditions.

DEM Formulation

The DEM is a numerical technique to study the mechani-
cal behavior of complex systems, not only homogenous but
also heterogeneous (in particle and bond properties), of dis-
crete bodies or particles. They are mostly modeled as circu-
lar disks (2D) or spheres (3D) though they can also be arbi-
trarily shaped. The interaction between particles is described
by applying the equations of motion to each particle, and a
contact law to each inter-particle contact. The DEM used in
this study was developed by Cundall,29 who restricted him-
self to modeling of spherical particles, so that the numerical
simulation is based on the following assumptions and rules:
• All particles are treated as undeformable balls.
• In (elastic) contacts, shape deformation of particles is

not described explicitly, but represented by a virtual overlap
(soft-contact approach).
• Overlap distance is related to contact force via the con-

tact law; it is small as compared to particle size.

Linear contact law

The contact law relates the relative displacement of two
particles at a contact to the contact force acting on them.
Figure 2 shows a contact model by two particles at positions
xi and xj, with radii Ri and Rj, respectively. The unit normal

vector nij (the suffix denotes the contact between particles i
and j) is defined by

nij ¼ xj � xi

dij
; dij ¼ xj � xi

�� ��: (3)

The contact force vector Fij can be resolved into normal
and shear components with respect to the contact plane as

Fij ¼ Fn
ij þ Fs

ij: (4)

The normal contact force vector is computed by

Fn
ij ¼ Fnijnij ¼ Kn

ijU
n
ijnij (5)

where Kn
ij is normal contact stiffness (in N/m) and Un

ij ¼ Ri þ
Rj � dij normal overlap distance. The shear contact force is
computed in an incremental fashion. When the contact is
formed, the total shear contact force is initialized to zero. Each
subsequent relative shear-displacement increment (resulting
from a shear contact velocity Vs

ij for the numerical time step Dt)

DUs
ij ¼ Vs

ijDt (6)

results in an increment of shear force

DFs
ij ¼ �Ks

ijDU
s
ij (7)

(with contact shear stiffness Ks
ij) that is added to the current

value of contact shear force

Fs
ij  Fs

ij þ DFs
ij: (8)

To obtain realistic behavior and numerical stability, vis-
cous damping needs to be added to the contact model.21,30

Damping forces act in both normal and shear directions and
are proportional to the respective contact velocities; the pro-
portionality factor is 2f

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Kijmimj=ðmi þ mjÞ

p
, where f is the

damping ratio (see Table 2), mi and mj denote the particle
masses and Kij the contact stiffness.

It should be noted that for contacts between unbonded
spherical particles, which experience small strain conditions
and exclusively compressive stresses, the Hertz model is a
more suitable contact law.30 But, in the present case of

Figure 2. Interaction between two particles.
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bonded particles, the simple linear contact model is mostly
used because it naturally incorporates tensile forces and is
computationally efficient.23,30

Motion equations

The motion of a single particle is determined by the re-
sultant force and moment vectors acting upon it. Particle
motion can be divided into translational and rotational
motion. For each particle, the equations of motion can be
expressed as two vector equations, the first relating resultant
force to the translational motion

m€xþ Fint ¼ Fext (9)

and the second resultant moment to rotational motion

I€hþMint ¼Mext (10)

Here, x and y are translational and angular position vec-
tors of the particle, respectively; the double dots denotes a
second time derivative; and m and I are mass and moment
of inertia, respectively (both scalar for spherical particle).
Fint denotes internal forces at the particle contacts; Fext

stands for external forces, for example, gravitational force,
and will be used for capillary forces from the fluid phase.
Mint and Mext are the internal and external moment (both in
Nm) acting on the particle, respectively. In our case, Mext is
set to zero, no moment being induced by capillary forces.

Computing particle motion

In DEM calculation, one mechanical time step is as fol-
lows. First, particle positions and velocities are initialized.
Once neighbors are determined, contacts between particles
are identified (which is the most time-consuming procedure)
and contact forces computed for touching particles. Then,
particle forces and moments are updated including potential
external forces and moments. The particle accelerations
hence can be computed and the magnitudes of particle veloc-
ities and displacements can be integrated. These computa-
tions are adopted for each particle in every time step. If the
external forces change, many such mechanical time steps are
necessary to track the evolution of the particle system.
Time-stepping is stopped when particles reach a mechanical
equilibrium state. Concerning the present application of
DEM to aggregates, one should keep in mind that particle

displacements are typically very small, often corresponding
to only a tiny fraction of particle diameter.

Bonding models

DEM allows proximate particles to be bonded together by
using contact and parallel bond models.30 The contact bond
model extends the linear contact response to particle configu-
rations with negative overlap. This is achieved by simple
continuation of the response curve: the contact force is com-
puted by (5) even for negative values of Un

ij, up to a prede-
fined maximum force Fn;max

ij beyond which the bond breaks
and contact force is set to zero. This ‘‘breakage of the
bond’’ is interpreted as a normal crack. In shear direction, if
the magnitude of the contact force computed by (8) equals
or exceeds a prescribed maximum shear contact force Fs;max

ij ,
the bond breaks, and the contact force is set to the friction
limit Fs;max

ij ¼ lij|Fn
ij|, where lij is the friction coefficient of

the contact. We will use the contact bond model to describe
shrinkage of soft material.

A parallel bond can be envisioned as a set of elastic
springs uniformly distributed over a circular cross-section
lying on the contact plane and centered at the contact.
Unlike the contact bond, the parallel bond can be associated
to a physical solid bridge between particles, as in a real ag-
gregate. Parallel bonds establish an elastic interaction
between particles that acts in parallel to the particle-based
portion of the force-displacement behavior. Thus, the exis-
tence of a parallel bond does not totally prevent slip. Parallel
bonds can transmit both force and moment between par-
ticles, whereas particles can transmit only force. Relative
motion at a contact causes a force and a moment to develop
within the bond as a result of the parallel bond stiffnesses (see
Figure 3). The force and moment that act on the two bonded
particles are related to the maximum normal and shear stresses
acting within the bond. If either of these maximum stresses
reaches the corresponding bond strength, that is, cracking
threshold, the parallel bond breaks and its contributions to
force and moment are no longer considered. We will use the
parallel bond model to describe cracks in stiff material.

Model parameters

The physical meaning of the micromechanical properties
in DEM, such as normal and shear particle stiffness, that is,
Kn and Ks, is not yet completely understood. So far, two
common strategies are used to estimate these crucial model

Figure 3. Schematic illustration of (external) forces on the particles (red cones) and resultant cracks of the parallel
bond, normal (in dark blue) or shear (in yellow).

[Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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parameters30: For the general case of arbitrary packings of
arbitrarily sized particles, model parameters are found by
means of a calibration process, in which a particular instance
of a model with a particular packing arrangement and set of
model parameters is used to simulate a set of material tests
(e.g., unconfined compression test, three-point bend test, Bra-
zilian test, etc.). The model parameters are then chosen to
reproduce the relevant material properties as measured in such
tests. For simple packing arrangements, the relation between
model parameters and commonly measured material proper-
ties is known a priori.30 As an example, for a cubic array of
spheres with radius R, the apparent Young’s modulus can be
expressed as E ¼ Kn

4R. In this work, the goal has not been to
find the micromechanical properties from own experiments;
instead, we have used calibration results from literature where
available, and known micro-macro relations otherwise.

Currently, a growing research activity can be observed to
supply DEM models with parameters obtained from
advanced microscale experiments, for example, atomic force
microscopy or nanoindentation,31,32 which directly investi-
gate particle-particle interactions.

Coupling of Pore Network with DEM

Representation of porous structure

We have used the two aforementioned discrete approaches
to describe the porous structure. The solid phase is repre-
sented by a cubic packing of monosized particles bonded at
their contact points (see Figure 4a). Accordingly, void space
is represented by a cubic network of cylindrical pores. The
radii of these pores, however, have been randomized (with a
small standard deviation) to produce the typical capillary
effects. Therefore, the two networks are not complementary
in a strict sense. Figure 4b shows a network that is partially
saturated by a single-component liquid. (For better visualiza-
tion of differences in pore radii, they are scaled exponen-
tially in the graphical representation.) Throughout the article
light gray space (inside pores) represents the air and vapor
phase, and dark blue stands for liquid. All simulations start
with networks fully saturated with water and drying from the
top (at 20�C and atmospheric pressure).

Model coupling scheme

The coupling of the two models (see Figure 4c) is via cap-
illary forces on the particles, which depend on liquid satura-
tion in the pore network and thus change over time. For
such a coupled simulation, we compute in a first pass the
evolution of pore saturations in a given pore network and
the capillary forces as described in the next section. These
forces are stored over time in the capillary force protocol. In
the second pass, the capillary forces are consecutively
applied to the complementary particle network (with its
given material properties) to compute the response using
DEM. The coupling is one-way, and pore sizes are not
updated with changing particle positions. However, for the
considered stiff aggregates, the actual change in network ge-
ometry because of capillary forces can be neglected. More
important than shrinkage are the exerted forces and the
resulting cracks. (The case of soft aggregates that exhibit
considerable shrinkage will be discussed later.)

As mass transfer is much slower than the mechanical
response, for every drying time step, a new (and only slightly
different) quasistatic equilibrium is approached in a limited
number of mechanical DEM time steps (500); the equilibrium
condition is checked by monitoring the mean unbalanced
force on the particles, which must tend to zero. Interparticle
bond breakage is recorded during simulations to obtain spatial
and temporal information on cracks and contact forces.

Capillary forces on particle network

Capillary forces are commonly encountered in nature33

during processes, such as evaporation and condensation,
leading to the formation of liquid bridges with menisci at
the liquid-gas interfaces. The surface curvature of the menis-
cus determines the negative Young–Laplace pressure inside
the liquid. This pressure acts in the direction normal to the
liquid-solid interface and pulls the solid together. Addition-
ally, there is the direct action of the liquid surface tension,
which pulls the contact line of meniscus and solid in the
direction of the tangent to the liquid interface. In modeling
of the capillary force, many expressions ranging from binary
systems—for instance, plate-sphere and sphere-sphere34—to
an arbitrarily shaped granular medium35 (multiple systems)
have already been developed.

In a cubic particle aggregate, every particle is bonded to
six neighboring particles and surrounded by 12 pores. The
mean radius of the (cylindrical) pores is computed to match
the constrictions of pore space between two pore bodies (see

Figure 4. Model porous medium where (a) represents
solid phase (bonds are represented as lines),
(b) complementary pore network (liquid is
plotted in dark blue, gas in light gray), and (c)
both networks.

[Color figure can be viewed in the online issue, which is
available at wileyonlinelibrary.com.]
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Figure 4c); and the radius of (circular) solid bridges is set to
touch those pore cylinders. Therefore, solid phase, that is,
primary particles plus solid bridges, and void space are to a
certain extent complementary. (Of course, the widening of
pores on either side of a constriction is not modeled; further-
more, there is an overlap of the cylindrical pores at the
nodes.) The described geometry of pore space justifies that
liquid bridges are not modeled because they cannot exist
between two neighboring particles, the corresponding space
being occupied by solid. Consequently, liquid is considered
to be located in the cylindrical pores. However, liquid
films11,12 and—if bonds are not solid—liquid bridges might
be subject to future analysis.

Assuming perfect wetting, the capillary force on the parti-
cle depicted in Figure 5 depends on effective wet area, Aw,
that is, the projection of the wetted area onto a plane perpen-
dicular to the local capillary force, and capillary pressure,
Pc ¼ 2r/r, in full pores. The mechanical moment that may
result from the contribution of the contact line is not consid-
ered here. To approximate the capillary force from pore net-
work geometry and pore saturations, we use the following
approach. The contributions of all twelve neighboring pores
are summed up, where each pore’s contribution is a vector
directed from particle centre to pore centre (defined as the
centre of mass of the full cylindrical pore). For the sake of
simplicity, we postulate wet area fractions to be proportional
to pore saturations Sj. (Specifically, variations in pore size or
capillary pressure are not accounted for.) Thus, for the time-
dependent capillary force on each particle, we obtain

Fcðxp; tÞ /
X12
j¼1

SjðtÞ xj � xp

jxj � xpj (11)

where xp and xj are coordinates of particle centre and pore
centers, respectively. In subsequent simulations, we have
chosen the proportionality factor in (11) such that capillary
pressure in a given network assumes a realistic value and Fc

has the unit of a force.

Evolution of capillary forces during drying

Dynamic simulations are run to see the evolution of capil-
lary forces during drying. In doing so, the aforesaid drying
model is applied to the same pore network to investigate the

role of liquid phase distributions for mechanical load onto
the material. Previous work has shown that phase patterns
mainly depend on the relative importance of capillarity and
liquid viscosity.36 Here, the two limiting cases are consid-
ered:
1. Liquid viscosity is considered as negligible (for capillary
pumping). It must be stressed that this is not only an ideali-
zation for liquids with low viscosity but also—and mainly—
an approximation of the case that pores are sufficiently large
and/or drying rates rather low, so that capillary liquid flow is
not affected by friction.
2. Pore liquid is considered as immobile. This case is
intended to represent high drying rates and/or drying of
small pores, for which viscous effects largely suppress capil-
lary flow. And it can also describe highly viscous liquids
such as binder solutions.

Figure 6 shows the respective drying rate curves in dimen-
sionless form. As we are interested in observing the capillary
force evolution in the whole system, we generated relatively
small networks (5 � 5 � 10) with particle diameter (and
pore length) 500 nm. The boundary layer is 5 lm thin, cor-
responding to a mass transfer coefficient of 5.1 m/s. Pore ra-
dius is normally distributed with 103 nm mean and standard
deviation 1 nm. (For the studied system, typical capillary
pressure is of the order of 1.4 MPa, and net capillary forces
as shown in Figure 5 are in the range of 0.35 lN.) The
width of pore size distribution determines the ratio of capil-
lary to viscous effects and therefore plays no major role in
the two limiting cases. For drying conditions between the
two discussed limits, intermediate behavior is observed as
shown in Figure 6 for the case of water. Pore network satu-
rations and capillary forces during the drying process are
depicted in Figure 7 for negligible liquid viscosity, whereas
the result of the immobile water simulation is presented in
Figure 8.

Discussing the capillary force evolution and starting with
the nonviscous case, one can see from Figure 7a that in the
fully saturated network, capillary forces appear on the top
surface as well as on the other surfaces (on which empty

Figure 5. One selected cell of the network with a parti-
cle, its neighboring pores and resulting capil-
lary force vector (red cone) as it evolves with
pore saturations (liquid in dark blue) during
drying.

[Color figure can be viewed in the online issue, which is
available at wileyonlinelibrary.com.]

Figure 6. Normalized drying rate vs. network saturation
for the simulations depicted in Figures 7 and
8, as well as for the case of water viscosity.
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pores have been imposed). In this regime, the compressive
capillary forces are symmetric and the net capillary force on
inner particles is zero. As evaporation continues, the liquid
phase splits up into small disconnected clusters (Figures 7b,
c). Accordingly, capillary forces get less organized such that
they are still compressive for the individual clusters whereas,
at the local level, tension forces can develop. Globally, cap-
illary forces decline downwards and eventually vanish at the
bottom of the network by the end of drying. However, in the
high viscosity limit, liquid stays in a single cluster and a
sharp drying front propagates through the network, accompa-
nied by a capillary force front that keeps the wet region
under compression (Figure 8); therefore, the force gradient

in this case is rather significant. At the bottom of the net-
work, the local capillary forces stay constant until this region
eventually dries out at the end of the process.

In conclusion, it shall be stressed that—depending on dry-
ing conditions—capillary forces evolve in different ways. In
the following, the question is addressed whether these capil-
lary interactions may promote mechanical effects and
whether these depend on drying conditions.

Evolution of contact force distribution

In this part, we describe the impact of local capillary force
evolution during drying on the global bond network. This is
demonstrated by a network of contact forces and cracks. Fig-
ure 9 represents interparticle contact forces in a small 5 � 5
� 10 particle network with 625 bonds (with material param-
eters as in Table 1). The resultant contact forces are com-
puted by applying the capillary forces from the previous
section (for the high viscosity limit) in Eqs. 4–8. If capil-
lary forces are comparable with bond strength, microcracks
may occur. Figure 9a illustrates the situation in the early
stage of drying (saturation 0.6), where 4% of the network
bonds have broken. We can see that the contact forces are
less pronounced in the dried network region because bond
failures allow the particles to reorganize and thus relieve
the tensile forces in the contact points. As drying pro-
gresses to network saturation 0.3, cracks (8% of bonds)
propagate downwards resulting in a network that is practi-
cally free of tensile forces. These simulation results are in
qualitative accord with numerical4,18 and experimental37

observations.
To provide a detailed insight into how a microcrack ini-

tiates, we have analyzed a normal contact force evolution
while applying the capillary forces in two different drying
conditions. In fact, we assume in our model that the history
of the contact force is not involved in crack formation. De-
spite the crack being only a result of the current state of the
contact force, this force is a result of the emptying order of
pores; therefore the drying conditions are crucial. Simula-
tions start with a fully saturated network where the capillary
forces are pronounced; and the particles are in mechanical
equilibrium state. Figure 10 shows an example of normal
contact force evolutions in one specific (vertical) bond near
the center of the network for the two limiting drying condi-
tions (see Table 1 for material parameters). Initially, capil-
lary forces cause compression of the particles (positive val-
ues of contact force). When the drying front passes the
bond, the action changes into tension (negative value of con-
tact force), which may eventually result in the breakage of
the bond if the current force reaches bond strength (in the
given example, �10.8 � 10�10 N). In the highly viscous
limit, the capillary force field in the wet part is rather uni-
form in lateral directions with a sharp change near the dry-
ing front (see Figure 8). In this case, the gas invasion takes
time to reach the bond and the bond experiences strong local
compression for longer. In the nonviscous case, pores are
invaded throughout the network leading to a disordered cap-
illary force field, and a weakening of normal compressive
contact force in the partially saturated region (at saturation
0.88). A preliminary analysis of these two different behav-
iors at the sample scale is done in the next section.

Figure 7. Evolution of capillary forces for negligible liq-
uid viscosity at (a) full saturation and at net-
work saturations, (b) 0.9, (c) 0.6, and (d) 0.3;
gray cylinders represent empty pores, and
dark blue is for liquid; capillary forces are
presented by red cones, and cone size scales
with force magnitude.

The network is subjected to evaporation at the top. (For bet-
ter visualization of differences in pore radii, they are scaled
exponentially). [Color figure can be viewed in the online
issue, which is available at wileyonlinelibrary.com.]

AIChE Journal April 2011 Vol. 57, No. 4 Published on behalf of the AIChE DOI 10.1002/aic 879



Simulation of Cracks and Shrinkage During
Drying

In practice, damage by cracks is rather observed during
drying of stiff materials (with high elastic modulus), whereas

shrinkage is the main effect when soft materials (with low
elastic modulus) are dried. In the DEM approach, the terms
‘‘stiff’’ and ‘‘soft’’ are translated into the behavior of pri-
mary particle contacts, for example, soft particles can have
significant virtual overlap. (We restrict our analysis to elastic
behavior, which is no general constraint to the method.) In
this section, we present numerical results for different drying
conditions as well as for both types of materials to show
these phenomena. Such simulations shall in future help to
find criteria for material properties and drying conditions to
preserve the solid structure. At first, we use a relatively
small network for qualitative discussion of phenomena; later
on, larger networks aim at more representative results.

Influence of drying conditions

We show how the dynamics of crack formation in stiff
particle aggregates is influenced by drying conditions. To
this purpose, we have chosen microparameters for a rather
dense porous agglomerate, namely activated alumina c-
Al2O3 (as used in23); as particle radii are about two orders
of magnitude smaller in our work, we have scaled parallel
bond stiffness accordingly (to get similar values in units N/
m). For simplicity, a uniform bond radius has been used,

Figure 8. Evolution of capillary forces for immobile water at network saturations (a) 0.9, (b) 0.6, and (c) 0.3; gray
cylinders represent empty pores, and dark blue is for liquid; capillary forces are presented by red cones,
and cone size scales with force magnitude.

The network is subjected to evaporation at the top. (For better visualization of differences in pore radii, they are scaled exponentially).
[Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]

Figure 9. Contact force distributions and crack devel-
opments at network saturations (a) 0.6 and
(b) 0.3. Compressive and tensile contact
forces are represented by green and red cyl-
inders, respectively (radius indicating force
magnitude, orientation accounting for normal
and shear components).

Normal and shear cracks are visualized by dark blue and
yellow discs, respectively. [Color figure can be viewed in
the online issue, which is available at wileyonlinelibrary.
com.]

Table 1. Microparameters of Stiff Particle Networks

Characteristic Value

Particle radius (m) 250 � 10�9

Particle density (kg/m3) 3230
Friction coefficient between particles 0.5
Damping ratio 0.7
Normal/shear stiffness of particles (N/m) 3 � 104

Normal/shear stiffness of parallel bonds (N/m3) 8 � 1014

Normal/shear strength of parallel bonds (N/m2) 1.6 � 104

Bond radius (fraction of particle radius) 0.5858
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which is computed from interparticle distances and mean
pore radius as explained above.

First, we analyze the case of negligible liquid viscosity: cap-
illary flow and resulting liquid phase distributions have been
discussed in context with Figure 7. In a second simulation step,
the capillary forces corresponding to these phase distributions
have been applied to the stiff particle aggregate; the resulting
normal and shear cracks of bonds are shown in Figure 11.

At high network saturations, when the network as a whole
loses liquid but stays partially saturated to the surface (first
drying period), it remains under compression by capillary
forces. During this initial period, only shear cracks are
observed, their number rising with drying time. At later
stages of drying, the drying front recedes and a completely
dry region develops (second drying period). This dry region
is no longer under compression because of the absence of

capillary forces. Therefore, also normal cracks may occur. In
this second period, normal cracks gradually appear as the
dry region moves into the network; and also more shear
cracks occur in the vicinity of the drying front. At the end
of drying, 66 shear cracks and 15 normal cracks are counted,
that is, 81 out of 625 bonds have broken. These cracks are
not uniformly distributed in space: the decrease of cracks
from top to bottom of the sample is attributed to the non-
symmetric force load on the different regions.

If liquid is immobile, all surface pores dry out immedi-
ately and a sharp drying front recedes into the pore network
as shown in Figure 8. The mechanical response of the solid

network is presented in Figure 12. At the beginning, the

bottom of the network stays completely saturated, and

therefore, experiences no changes in capillary forces, no

cracks are observed in that region. Only in the vicinity of

the receding phase front, cracks occur. As argued for the

nonviscous case, normal cracks may only occur in the dry

region where the network is no longer under compression.

In this way, together with the propagating drying front, a

crack front moves towards the bottom of the network,

resulting in a total of 42 shear cracks and 12 normal cracks.

This means that 54 out of 625 bonds have failed during the

drying process. These final numbers are very similar to

those of the nonviscous case. The main difference seems to

be in the time-dependence of crack appearance, because

cracks only occur in the neighborhood of local changes in

liquid saturation.

Influence of bond strength

To show the future potential of this modeling approach,
bond strength has been systematically varied to determine its
effect on crack formation and distribution. To this purpose, a
nonviscous drying simulation has been used with the same
pore and particle network parameters as before (see Table
1). As shown in Figure 13 and Table 2, by increasing bond
strength, the total number of cracks can be reduced. This is

Figure 10. Evolution of normal contact forces at one
specific contact in nonviscous and highly
viscous limit.

Figure 11. Distribution of microcracks for negligible liquid viscosity at network saturations (a) 0.9, (b) 0.6, and (c)
0.3 as well as (d) for the completely dry aggregate.

Dark blue and yellow cylinders stand for normal and shear cracks, respectively. (For better readability, only the bond network is shown.).
[Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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clear as the bonds can better withstand the capillary forces
occurring during drying. As a second effect, the type of
cracks is changed: for higher bond strength, shear cracks are
dominating, whereas the numbers of normal and shear cracks
are comparable for weak bonds. Moreover, the time-depend-
ency of the process can be observed, and influence of the
bond strength on the number of cracks seems to be stronger
in the second drying period than in the first. In the first
drying period, when liquid is removed from the whole
network, mainly shear cracks may occur. In the second
period, when the drying front recedes (here at network
saturation \0.75), still intact bonds may be broken by
additional shear cracks and also normal cracks. This
means that cracks occur to a great extend in the second
drying period.

Monte-Carlo simulations

In the previous parts, only one realization of the network
structure in each drying condition was considered; simula-
tion results showed slightly more cracks for the nonviscous
limit of drying. To push the analysis further and being
aware of the fact that randomness of network generation
may lead to quite different network saturation distributions
and accordingly varied mechanical responses, Monte-Carlo
simulations on larger networks have to be run. Present
computational cost and memory limitations impose a rela-
tively small particle network size (10 � 10 � 20, corre-
sponding to 5500 interparticle bonds) and a limited number
(10) of MC simulations per drying condition. Simulations
are carried out with the same pore and particle parameters
as above (see Table 1).

Figure 12. Distribution of microcracks for immobile liquid at network saturations (a) 0.9,(b) 0.6, (c) 0.3, and (d) for
the completely dry aggregate.

Dark blue and yellow cylinders stand for normal and shear cracks, respectively. [Color figure can be viewed in the online issue, which is
available at wileyonlinelibrary.com.]

Figure 13. Cracks at the end of drying of brittle aggregates for different bond strengths when liquid viscosity is
neglected (see Table 2 for numbers).

[Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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Simulations results are summarized in Table 3 as average
numbers of cracks with respective statistical standard devia-
tions. First, one can notice a size effect: for the same micro-
mechanical parameters as above, the fraction of broken
bonds is considerably larger for this larger network. Second,
the results indicate that more normal cracks, but less shear
cracks have occurred in the viscous limit than in the nonvis-
cous. These two opposing effects compensate each other and
the discrepancy in total number of cracks is not significant.
In other words, in both cases, the order of emptying the
pores is different, but a representative bond experiences—
sooner or later in the drying process—similar local tensions,
which mainly occur when its direct-neighbor pores are emp-
tied. Regarding the spatial distributions of cracks, very regu-
lar crack patterns are obtained for the viscous limit, whereas
the nonviscous limit produces correlated, but irregular crack
patterns (not shown).

In reality, the liquid pressure in the pores has a gradient
that depends on drying rate; this gradient is expected to be
negligible in the nonviscous limit and to be pronounced for
the viscous limit. As discussed in literature,18 this pressure
gradient leads to tensile forces near the evaporating surface
and the combination of macroscopic tension and local
‘‘switching off’’ of capillary forces is expected to result in
macroscopic cracks. Such differences in liquid pressures are
not yet included in the modeling of forces, so that cracks are
only described on a ‘‘local’’ basis.

Shrinkage for soft materials

At last, an application of the new method to soft materials
is outlined. One prominent example is highly porous gels
that show considerable—and sometimes reversible—shrink-
age during drying. To our knowledge, no DEM simulation
of such materials has yet been performed, so that in the lack
of literature parameters, we use the simple linear contact
bond model with parameters (see Table 4) that correspond to
typical macroscopic moduli. It is not evident that the mecha-
nisms during elastic compaction of a gel matrix, that is, the
reversible folding of solid filaments, can be approximated by
overlapping of soft discrete particles. Indeed, the particles in

DEM simulation now rather represent small portions of solid
material than real primary particles, and the liquid distribu-
tion in the pore network is an averaged one. Nevertheless,
we will see that qualitative effects can be correctly repro-
duced by the chosen DEM approach. Contact force distribu-
tion during shrinkage is shown in Figure 14 for a 10 � 5 �
5 network. Initially, the aggregate is in mechanical equilib-
rium and capillary forces are not yet loaded (Figure 14a).
Then, in one step, the full capillary forces are applied to the
aggregate leading to a new equilibrium between attractive
capillary and repulsive contact forces with considerable
shrinkage (Figure 14b). In fact, this single step corresponds
to a complete first drying period during which liquid re-
moval is compensated by ideal shrinkage, that is, all pores
remain fully saturated but reduce their size. The kinetics of
this period are not yet modeled; specifically, volume change
of pores is not accounted for and viscous effects leading to
nonuniform shrinkage (or even a ‘‘premature’’ end of the
first drying period by emptying of pores) are not yet
addressed. Therefore, we restrict ourselves to the nonviscous
limit, where uniform shrinkage can be assumed.

As evaporation continues in the second drying period, cap-
illary forces gradually disappear from the top and repulsive
contact forces bring the particles back to their initial posi-
tions (see Figure 14c). Such a spring-back phenomenon is
known to occur for certain gels.38,39 Eventually, mechanical
equilibrium for the dried aggregate will be reached, without
cracks having occurred. A near equilibrium state is shown in
Figure 14d. In the second period, the results are meaningful
even if volume change is neglected, because it concerns the
gas pores, which play a minor role in transport phenomena.

Conclusions

A discrete approach has been presented to model mechani-
cal effects during isothermal drying of porous materials. The
solid phase is represented by a particle network, the void
space by a complementary pore network. Local capillary
forces are computed from pore saturations as obtained from

Table 3. Number Distributions of Cracks for 10 MC Runs of
Nonviscous and Viscous Drying

Nonviscous Viscous

Normal cracks 1245 � 57 1490 � 20
Shear cracks 1660 � 50 1350 � 29
Total cracks 2900 � 36 2850 � 39

Table 4. Microparameters of Soft Particle Networks

Characteristic Value

Particle radius (m) 250 � 10�9

Particle density (kg/m3) 2000
Friction coefficient between particles 0.5
Normal/shear stiffness of particles (N/m) 10
Normal/shear contact bond strength/capillary force 2

Table 2. Stiff Aggregate Behavior for Varying Bond Strength

a b c d

Normal and shear bond strength (104 N/m2) 0.4 0.8 1.6 2
Number of cracks during first drying period
Shear 52 23 13 10
Normal 13 14 2 0
Total 65 37 15 10

Number of cracks during second drying period
Shear 290 197 53 26
Normal 162 90 13 3
Total 452 287 66 29

Total number of cracks 517 324 81 39
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a pore network drying algorithm and then applied to the par-
ticle network by use of DEM.

For soft materials, such as gels, spring-back of the mate-
rial, which has shrunken during the first drying period, has
been described. For stiff materials, influence of liquid phase
distributions during drying and material properties on mate-
rial response (i.e., the occurrence of cracks) has been investi-
gated. Our results suggest that different spatial distributions
of liquid and resulting capillary forces during drying cannot
explain the fact that faster drying leads to greater material
damage. Instead, our simulations seem to confirm the hy-
pothesis that only the combination of local forces and mac-
roscopic stress leads to this damage.18

Although the current model version is still limited, the
presented results correctly describe material behavior at a
qualitative level. By this, the aptitude of the discrete
approach to describe drying phenomena has been demon-
strated; and appropriate model extensions are believed to
make the model predictive. For example, two-way coupling
shall be introduced by accounting for shrinkage in the pore
network. Another major effect is the pressure gradient18 in
the liquid, which causes differential stress and nonuniform
shrinkage of the solid. A model extension accounting for
exact liquid pressures is expected to allow the simulation of
differential stress in the solid and of (propagating) macro-
cracks. Further, the approach may be extended to nonisother-
mal effects, which are already included in PNMs. Ongoing
research work extends the presented model to irregular parti-
cle aggregates and their complementary pore networks.
Additionally, DEM offers the possibility to use more com-
plex contact and particle properties. Advanced microscale

experiments will allow parameterization of the DEM model,
and analysis of damaged dry material will help assess simu-
lation results for cracks in a more rigorous way.

In conclusion, the presented technique is seen as a new
powerful tool to analyze interactions between fluid and solid
phases during drying at the pore level. In this approach, as
microscopic behavior can be directly investigated, truly local
information is available from simulations (as opposed to
continuous models). Indeed, such modeling efforts are under-
taken in the belief that discrete approaches to classical prob-
lems can help for a fundamental understanding and that
more refined model versions will allow studying mechanical
effects for a wide range of materials and drying conditions.
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duction of carbon xerogel monoliths by optimizing convective dry-
ing conditions. Carbon. 2006;44:2534–2542.

4. Pourcel F, Jomaa W, Puiggali JR, Rouleau L. Criterion for crack
initiation during drying: alumina porous ceramic strength improve-
ment. Powder Technol. 2007;172:120–127.

5. Katekawa ME, Silva MA. A review of drying models including
shrinkage effects. Drying Technol. 2006;24:5–20.

Figure 14. Volumetric shrinkage and contact force distribution of a soft aggregate at four different times during
drying: (line thickness indicates relative force; black color means compression and white tension).

884 DOI 10.1002/aic Published on behalf of the AIChE April 2011 Vol. 57, No. 4 AIChE Journal



6. Prat M. Percolation model of drying under isothermal conditions. Int
J Multiphase Flow. 1993;46:691–704.

7. Nowicki SC, Davis HT, Scriven LE. Microscopic determination of
transport parameters in drying porous media. Drying Technol.
1992;10:925–946.

8. Yiotis AG, Stubos AK, Boudouvis AG, Yortsos YC. A 2-D pore
network model of the drying of single-component liquids in porous
media. Adv Water Resour. 2001;24:439–460.

9. Laurindo JB, Prat M. Modeling of drying in capillary-porous media:
a discrete approach. Drying Technol. 1998;16:1769–1787.

10. Metzger T, Irawan A, Tsotsas E. Isothermal drying of pore net-
works: influence of friction for different pore structures. Drying
Technol. 2007;25:49–57.

11. Yiotis AG, Boudouvis AG, Stubos AK, Tsimpanogiannis IN, Yort-
sos YC. The effect of liquid films on the drying of porous media.
AIChE J. 2004;50:2721–2737.

12. Prat M. On the influence of pore shape, contact angle and film flows
on drying of capillary porous media. Int J Heat Mass Transfer.
2007;50:1455–1468.

13. Huinink HP, Pel L, Michels MAJ, Prat M. Drying processes in the
presence of temperature gradients, pores scale modeling. Eur Phys
JE. 2002;9:487–498.

14. Plourde F, Prat M. Pore network simulations of drying of capillary
media. Influence of thermal gradients. Int J Heat Mass Transfer.
2003;46:1293–1307.

15. Surasani VK, Metzger T, Tsotsas E. Consideration of heat transfer
in pore network modeling of convective drying. Int J Heat Mass
Transfer. 2008;51:2506–2518.

16. Segura LA, Toledo PG. Pore-level modeling of isothermal drying of
pore networks. Effects of gravity and pore shape and size distribu-
tions. Chem Eng J. 2005;111:237–252.

17. Metzger T, Irawan A, Tsotsas E. Influence of pore structure on dry-
ing kinetics: a pore network study. AIChE J. 2007;53:3029–3041.

18. Brinker CJ, Scherer GW. Sol-Gel Science. New York: Academic
Press, 1990.

19. Amaral M. Deformation of solid surface due to capillary forces.
J Colloid Interface Sci. 1984;100:17–26.

20. Segura L, Toledo PG. Pore-level modeling of isothermal drying of
pore networks accounting for evaporation, viscous flow, and shrink-
ing. Drying Technol. 2005;23:2007–2019.

21. Cundall PA, Strack ODL. A discrete numerical model for granular
assemblies. Geotechnique. 1979;29:47–65.

22. Moreno-Atanasio R, Ghadiri M. Mechanistic analysis and computer
simulation of impact breakage of agglomerates: effect of surface
energy. Chem Eng Sci. 2006;61:2476–2481.

23. Antonyuk S. Deformations- und Bruchverhalten von kugelförmigen
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